Bounded Model Checking (BMC)

Dr Olga Tveretina

Summer semester, 2009

Background: model checking

• Given:

- a finite transition system *M*
- ◆ a property P (in some temporal logic)
- The model checking problem:
 - Does P holds in M?

Temporal properties

Safety properties:

- **→** "Always x=y"
- \bullet G (x=y)

• Liveness properties:

- "Reset can always be reached"
- GF Reset
- "From some point on, always switch_on"
- FG switch_on

OBDDs and symbolic model checking

- OBDD is a canonical form to represent Boolean functions
- They are often more compact than 'traditional' normal forms as CNFs, DNFs and can be manipulated efficiently
- The reachable state-space is represented by a OBDD
- The property is evaluated recursively, by iterative fix point computations on the reachable state-space

Problems with OBDDs

- BDDs are a canonical representation, but often become too large
- Variable ordering must be uniform along paths.
- Selecting right variable ordering very important to built small BDDs
 - time consuming or needs manual intervention
 - in some cases no space efficient variable ordering exists
- Alternative approaches to model checking use SAT procedures

Advantages of SAT procedures

- SAT procedures also operate on Boolean formulas but do not use canonical forms
- Do not suffer from the potential space explosion of BDDs
- Different orderings of variables are possible on different branches
- There exist very efficient implementations

SAT solver progress 1960 - 2010

(E.Clarke)

- A. Biere, A. Cimatti, E. Clarke, Y. Zhu, Symbolic Model Checking without BDDs, TACAS'99
- E. Clarke, A. Biere, R. Raimi, Y. Zhu, Bounded Model Checking Using Satisfiability Solving, 2001

- Based on SAT
- There is a counterexample of length k <=> propositional formula is satisfiable
- BMC for LTL reduced to SAT in poly time

Example:

- Most of the safety properties can be expressed as 'always p', where p is a propositional variable
- Is there a state reachable within k steps that satisfies

- Existential model checking problem M = Ef for an LTL formula f and a Knipke structure M
- To look for a witness to the property that can be represented within a bound of k steps
- Given k, the problem is reduced to the satisfiability of a propositional formula $[[M,f]]_k$
- If [[M,f]]k is satisfiable then the propositional model provides a witness of k steps to f

- The method is not complete
- If $[[M,f]]_k$ is unsatisfiable then nothing can be said about the existence of a solution for $M \models f$ models with higher bound
- The typical technique is to generate and solve [[M,f]]_k for increasing values of k

- Effective and practical technique, especially in the process of falsification, i.e. bug funding
- Bounded model checking based on SAT procedures not BDD
- Smart DFS search of SAT potentially will get faster to a satisfying sequence (counterexample)
- No exponential space

Creation of propositional formula

• Given:

- a transition system M
- a temporal logic formula f
- a user-supplied bound k

• Construct:

 a propositional formula [[M,f]]k is satisfiable iff f is valid along some computation path of M

Creation of propositional formula

• For state transition system M and time bound k, the unrolled transition relation is

$$[[\mathbf{M}]]_k = \mathbf{I}_{(\mathbf{S}_0)}^{k-1} \wedge \wedge \mathbf{T}_{(\mathbf{S}_i, \mathbf{S}_{i+1})}$$

$$i=0$$

- \bullet I(S₀) is the characteristic function of the set of initial states
- \bullet T(S_i,S_{i+1}) is the characteristic function of the transition relation

• a propositional formula [[M,f]]k is satisfiable iff f is valid along some computation path of M

Creation of propositional formula

Example:

- Consider the CTL formula EF p
- Check whether **EF p** can be verified in two time steps, i.e. k=2

$$[[M,f]]_2 = I(s_0) \land T(s_0,s_1) \land T(s_1,s_2) \land (p(s_0) \lor p(s_1) \lor p(s_2))$$

• Here, $(p(s0) \lor p(s1) \lor p(s2))$ is [[**EF** p]]₂

Safety property example

2-bit counter: the least significant bit represented by a Boolean variable A and the most significant by B

```
Transition relation:

(A' <—> ¬A) \land (B' <—> A \lozenge B)

\lozenge stands for XOR, <—>, XNOR
```

```
I(s0): (\neg A0 \land \neg B0) \land

T(s0,s1): ((A1 < --> \neg A0) \land (B1 < --> (A0 \lozenge B0))) \land

T(s1,s2): ((A2 < --> \neg A1) \land (B2 < --> (A1 \lozenge B1))) \land

p(s0): (A0 \land B0 \lor

p(s1): A1 \land B1 \lor

p(s2): A2 \land B2)
```

• We add a transition from state (1,0) back to itself

Define:

```
inc(s,s')=(A' <—> \negA) \land (B' <—> (A \Diamond B))
T(s,s')=inc(s,s') \lor (B \land \negA \land B' \land \negA')
```


Fig. 1. A two-bit counter with an extra transition

- A counter must eventually reach state (1,1): **AF** (b \land a)
- A counterexample that demonstrates this would be a path starting at the initial state, in which the counter never reaches state (1,1): **EG** p, where $p = \neg B \lor \neg A$

- Set the time bound k for checking EG p at 2
- ◆ All candidate paths will then have k+1, or 3 states, an initial one and two reached upon two successive transitions: s0, s1, s2
- The transition relation must hold for k=2

$$[[M]]_2 = I(s_0) \land T(s_0,s_1) \land T(s_1,s_2)$$

 The sequence of states s0, s1, s2 must be a part of a loop, i.e.

$$T(s2,s3) \land (s3=s0 \lor s3=s1 \lor s3=s2)$$

```
I(s0):
                       (\neg A0 \land \neg B0)
                                                           Λ
T(s0,s1): ((A1 <—> ¬A0) \land (B1 <—> (A0 \lozenge B0)) \lor
                       B1 \land \neg A1 \land B0 \land \neg A0) \land
T(s1,s2): ((A2 <—> ¬A1) \land (B2 <—> (A1 \lozenge B1)) \lor
                       B2 \land \neg A2 \land B1 \land \neg A1)
T(s2,s3): ((A3 <—> ¬A2) \land (B3 <—> (A2 \Diamond B2)) \lor
                       B2 \land \neg A2 \land B1 \land \neg A1)
s3=s0: ( (A3 <—> A0) \(\triangle\) (B3 <—> B0)
                                                         \bigvee
s3=s1:
                  (A3 < --> A1) \land (B3 < --> B1)
s3=s2:
                  (A3 < --> A2) \land (B3 < --> B2)
p(s0):
                      ( ¬A0 ∧ ¬B0 ∨
p(s1):
                        ¬A1 ∧ ¬B1 ∨
p(s2):
                       ¬A2 /\ ¬B2 )
```

- The formula is satisfiable
- The satisfying assignment corresponds to a path from initial state (0,0) to (0,1) and then to (1,0) followed by the self-loop at state (1,0), and is a counterexample to **AF** (B \land A)
- Removing the self-loop would remove the lines

$$B_i \land \neg A_i \land B_{i-1} \land \neg A_{i-1}$$

The formula then become unsatisfiable

Determining the bound k

 For every model M and LTL property P there exists k such that

$$M \models_k P \longrightarrow M \models_k P$$

The minimal such k is the completeness threshold
 (CT)

Determining the bound k

- Diameter d = longest 'shortest path' from an initial state to any other reachable state
- Recurrence diameter rd = longest loop-free path
- $rd \ge d$

$$d = 2$$
$$rd = 3$$

Determining the bound k

Theorem: For **G**p properties CT = d.

• *Theorem:* For **F**p properties CT = rd.

• *Open problem:* The value of CT for general LTL logic is unknown.

What BMC useful for?

- A.I. planing problems:
 Can we reach a desirable state in k steps?
- Verification of safety properties:
 Can we find a bad state in k steps?
- Verification:

Can we find a counterexample in k steps?

BMS vs. MC

• Advantages of BMS:

- Counterexamples found faster and of minimal length
- Less space, no manual intervention (order on variables for OBDDs)
- The modern SAT solvers are very efficient

Disadvantages of BMS:

• With the limit k, completeness cannot be always achieved

BMC

- A model checker called BMC has been implemented, based on bounded model checking.
- It's input language is a subset of the SMV language.
- It takes in a circuit description, a property to be proven, and a user supplied time bound k.
- It then generates the propositional formula.