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Background: model checking

» Given:

+ a finite transition system M

» a property P (in some temporal logic)

o The model checking problem:
* Does P holds in M?

?
MI=P



Temporal properties

> Safety properties:

**Always x=y”
*G (x=y)

» Liveness properties:

+ “Reset can always be reached”
+ GF Reset
* “From some point on, always switch_on”

* FQG switch_on



OBDDs and symbolic model checking

* OBDD 1s a canonical form to represent Boolean
functions

* They are often more compact than 'traditional’ normal
forms as CNFs, DNFs and can be manipulated
efficiently

» The reachable state-space 1s represented by a OBDD

» The property 1s evaluated recursively, by iterative fix
point computations on the reachable state-space



Problems with OBDDs

» BDDs are a canonical representation, but often become
too large

» Variable ordering must be uniform along paths.

» Selecting right variable ordering very important to built
small BDDs

* time consuming or needs manual intervention

* 1n some cases no space efficient variable ordering exists

» Alternative approaches to model checking use SAT
procedures



Advantages of SAT procedures

* SAT procedures also operate on Boolean formulas but do not
use canonical forms

* Do not suffer from the potential space explosion of BDDs

» Different orderings of variables are possible on different
branches

* There exist very efficient implementations
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Bounded model checking

* A. Biere, A. Cimatti, E. Clarke, Y. Zhu, Symbolic Model
Checking without BDDs, TACAS’99

* E. Clarke, A. Biere, R. Raimi, Y. Zhu, Bounded Model
Checking Using Satisfiability Solving, 2001



Bounded model checking

* Based on SAT

* There 1s a counterexample of length k <=>
propositional formula 1s satisfiable

* BMC for LTL reduced to SAT 1n poly time

Example:

* Most of the safety properties can be expressed as
‘always p', where p is a propositional variable

» Is there a state reachable within k steps that satisfies
—|p‘7
P
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Bounded model checking

* Existential model checking problem M |= Ef for an LTL formula
and a Knipke structure M

* To look for a witness to the property that can be represented within
a bound of k steps

* Given k, the problem 1s reduced to the satisfiability of a
propositional formula [[M,]]x

* If [[M.,1]]x 1s satisfiable then the propositional model provides a
witness of k steps to f



Bounded model checking

* The method 1s not complete

» If [[ML1]]x 1s unsatisfiable then nothing can be said
about the existence of a solution for M |= f models with
higher bound

» The typical technique 1s to generate and solve [[M,f]]x
for increasing values of k



Bounded model checking

» Effective and practical technique, especially in the
process of falsification, 1.e. bug funding

* Bounded model checking based on SAT procedures not
BDD

* Smart DFS search of SAT potentially will get faster to a
satisfying sequence (counterexample)

* No exponential space



Creation of propositional formula

o Given:

* a transition system M
+ a temporal logic formula

* a user-supplied bound k

» Construct:

* a propositional formula [[M,f]]x1s satisfiable 1ff f 1s valid
along some computation path of M



Creation of propositional formula

» For state transition system M and time bound k, the
unrolled transition relation 1s

[[M]]k = I650) A /\ T(si,s)
=0

* I(so) is the characteristic function of the set of initial states

* T(Si,Si+1) is the characteristic function of the transition relation

» a propositional formula [[M,{]]x1s satistiable 1ff f 1s
valid along some computation path of M



Creation of propositional formula

Example:

* Consider the CTL formula EF p

+ Check whether EF p can be verified in two time
steps, 1.e. k=2

[[MLf]]2 = I(so) A T(s0,81) \ T(s1,82) \ (p(s0) V p(s1) V p(s2))

» Here, (p(sO) V p(s1) V p(s2)) 1s [[EF p]]-



Safety property example

2-bit counter: the least significant bit represented by a Boolean variable
A and the most significant by B

CR 1 Transition relation:
l | (A' <—> -A) A (B' <—> A 0 B)

010 >@ 10 ¢ stands for XOR, <—>, XNOR

1(s0): (-A0 \ -~ BO) A\

T(s0,s1): ((A1 <—>-A0) A (B1 <—> (A0 ¢ B0))) A

T(s1,52): ((A2 <—>-A1) \ (B2 <—> (A1 0 B1))) A

P(s0): ( AOABO \V

p(s1): A1 /\ B1 \V

P(s2): A2 \ B2 )



Liveness property example

* We add a transition from state  (1,0)
back to 1itself Gf

O—0O>5

* Define:

inc(s,s')=(A' <—> -A) \ (B' <—> (A 0 B))
T(s,s')=inc(s,s') V (B \AN-ANB'/\-A")

Fig. 1. A two-bit counter with an extra transition

* A counter must eventually reach state (1,1): AF (b /A a)

* A counterexample that demonstrates this would be a path
starting at the initial state, in which the counter never reaches
state (1,1): EG p, where p=—-B V -A



Liveness property example

» Set the time bound k for checking EG p at 2

+ All candidate paths will then have k+1, or 3 states, an initial one
and two reached upon two successive transitions: s0, s1, s2

* The transition relation must hold for k=2

[[M]]2 = I(so) /A T(so,s1) /\ T(s1,82)

* The sequence of states s0, s1, s2 must be a
part of a loop, i.e.

T(s2,s3) /\ (s3=s0 V s3=s1 V s3=s2)



Liveness property example

I(sO): (=A0 A = BO) A
T(sO,s1): ((A1 <—>=A0) A (B1 <—> (A0 0 BO)) V
B1 A -A1 /A B0 A-A0) A
T(s1,82): ((A2 <—> -A1) \ (B2 <—> (A1 0 B1))
B2 A -A2 A B1 A\ -A1) A
T(s2,83): ((A3 <—>-A2) A\ (B3 <—> (A2 0 B2)) V
B2 A -A2 A B1 A\ -A1) A

V

$s3=s0: ( (A3 <—> A0) N\ (B3 <—> BO) V
s3=s1: (A3 <—> A1) /\ (B3 <—> B1) V
S3=52: (A3 <—>A2) A (B3<—>B2) ) V
p(s0): (~AOA-BO V
p(sl): -A1A-B1 V

p(s2): -A2 \-B2 )



Liveness property example

* The formula i1s satisfiable

* The satisfying assignment corresponds to a path from
initial state (0,0) to (0,1) and then to (1,0) followed by the
self-loop at state (1,0), and i1s a counterexample to AF (B /\
A)

* Removing the self-loop would remove the lines

Bi /\ -Ai \ Bi1 /\ =Ai-1

* The formula then become unsatisfiable



Determining the bound k

* For every model M and LTL property P there exists k
such that

Ml=xP —> MI=P

* The minimal such k i1s the completeness threshold
(CT)



Determining the bound k

* Diameter d = longest 'shortest path' from an 1nitial
state to any other reachable state

+ Recurrence diameter rd = longest loop-free path

*»1rd>d
O - > O

d=2
¢ ¢ rd =3
@ . > @




Determining the bound k

» Theorem: For Gp properties CT = d.
p
S0

» Theorem: For Fp properties CT = rd.

PO P@® P@® P@®

— > — > — >

* Open problem: The value of CT for general LTL
logic 1s unknown.



What BMC useful for?

* A.L planing problems:
Can we reach a desirable state in k steps?

* Verification of safety properties:
Can we find a bad state 1n k steps?

* Verification:
Can we find a counterexample 1n k steps?



BMS vs. MC

* Advantages of BMS:

* Counterexamples — found faster and of minimal
length

* Less space, no manual intervention (order on
variables for OBDDs)
* The modern SAT solvers are very efficient

* Disadvantages of BMS:

*  With the limit k, completeness cannot be
always achieved



BMC

* A model checker called BMC has been implemented,
based on bounded model checking.

» It’s input language 1s a subset of the SMV language.

+ It takes 1n a circuit description, a property to be
proven, and a user supplied time bound k.

+» It then generates the propositional formula.
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