5 – BINÄRE ENTSCHEIDUNGS-DIAGRAMME (BDDS)

Sommersemester 2009

Dr. Carsten Sinz, Universität Karlsruhe

Datenstruktur BDD

- 1986 von R. Bryant vorgeschlagen
- zur Darstellung von aussagenlogischen Formeln (genauer: Booleschen Funktionen)
 - Boolesche Fkt.: $f: \mathbf{B}^n \to \mathbf{B}$ (für $n \in \mathbf{N}$)
- f wird repräsentiert als gerichteter azyklischer Graph (DAG)
 - "Baum mit Sharing"
 - Blätter: Boolesche Konstanten 0/1;
 innere Knoten: markiert mit Variablen, genau zwei
 Nachfolger (über 0-/1-Kante)

BDD: Semantik

Terminalknoten stellen konstante Funktion 0 bzw. 1 dar

0

- Innere Knoten interpretiert als:
- Konstante 0

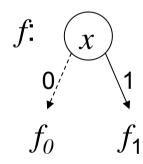
Konstante 1

$$f = \text{if } x \text{ then } f_1 \text{ else } f_0 \qquad f: \qquad x$$

$$= (x?f_1:f_0) \qquad 0$$

$$= (x \Rightarrow f_1) \land (\neg x \qquad f_0)$$

$$\Rightarrow f_0$$

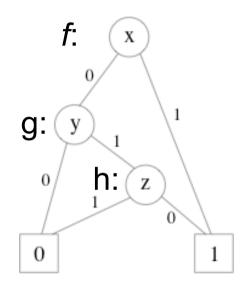


Innerer Knoten mit

- Entscheidungsvariable x
- f₀ an 0-Kante und
- f₁ an 1-Kante

 $[f_0 \text{ und } f_1 \text{ wiederum BDD-Knoten}]$

BDD: Beispiel



BDD-Darstellung von $x \vee (y \wedge \neg z)$

```
f = if x then 1 else g

= if x then 1 else (if y then h else 0)

= if x then 1 else

(if y then (if z then 0 else 1) else 0)

= if x then 1 else (if y then \neg z else 0)

= if x then 1 else (y \Rightarrow \neg z) \land (\neg y \Rightarrow 0)

= if x then 1 else (y \Rightarrow \neg z) \land y

= if x then 1 else \neg z \land y

= (x \Rightarrow 1) \land (\neg x \Rightarrow \neg z \land y)

= x \lor (\neg z \land y)
```

Reduced Ordered BDDs (ROBDDs)

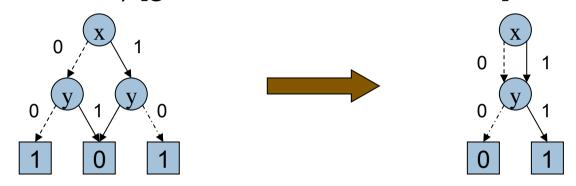
- Totale Ordnung auf Variablen: >
 - Bedingung: Variable des Elternknotens muss kleiner sein als Variable beider Kindknoten
 - Auf jedem Pfad kommt jede Variable höchstens einmal vor

2. Reduktionen:

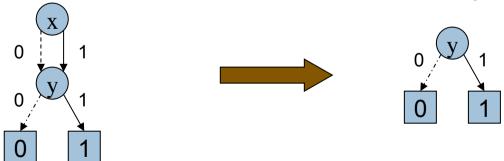
- Isomorphe Teilbäume dürfen nicht mehrfach vorkommen, mehrere Vorkommen werden auf eines reduziert.
- Knoten f mit $f_0 = f_1$ werden gelöscht und Kanten, die auf f zeigen auf f_0 (bzw. f_1) umgebogen.

ROBDDs: Beispiel Reduktionen

Reduktion a) [gleiche Teilbäume nur 1x]



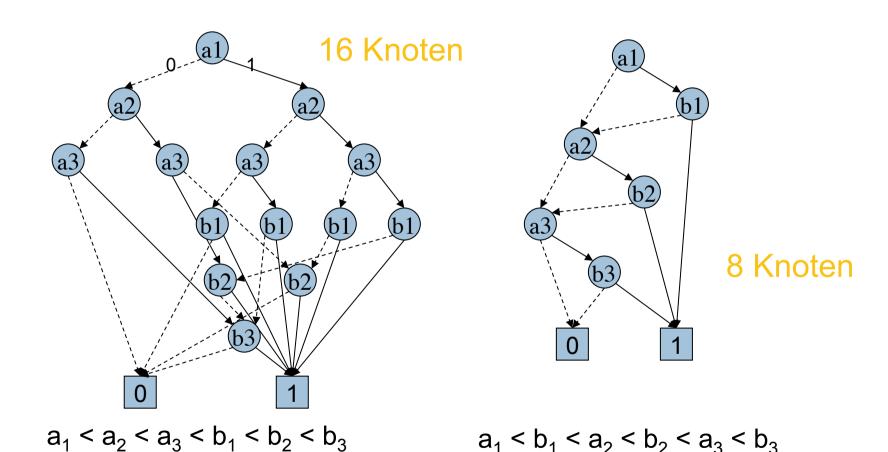
Reduktion b) [gleiche Nachfolger, d.h. $f_0=f_1$]



ROBDDs: Wichtige Eigenschaften

- □ ROBDD b zu gegebener Booleschen Funktion f eindeutig, d.h.:
 - b ist eindeutiger Repräsentant aller zu f äquivalenten Formeln.
 - Spezialfall: Unerfüllbare (allgemeingültige) Formeln werden durch O-Knoten (1-Knoten) repräsentiert.
- Größe des ROBDDs kann stark von der gewählten
 Variablenordnung > abhängen.

Abhängigkeit von Variablenordnung Bsp. $f = a_1*b_1+a_2*b_2+a_3*b_3$



Generierung von (RO)BDDs

- 1. "Top-Down"-Ansatz
 - Zerlegung der Eingabeformel f unter gleichzeitiger
 Generierung des BDDs, d.h.
 - a) Selektion der kleinsten in f vorkommenden Variablen
 - b) Berechnung von f_0 und f_1
 - c) Rekursive BDD-Transformation von f_0 und f_1
- 2. "Bottom-Up"-Ansatz
 - \square BDDs für atomare Formeln (Variablen/0/1)
 - Operationen zur Generierung komplexer BDDs aus einfacheren (z.B. BDD-Disjunktion, BDD-Konjunktion)

Top-Down-Ansatz: Grundlagen

Definition: Restriktion

Sei F eine aussagenlogische Formel, x eine Variable und b \in {0,1}. Die Restriktion F $|_{x=b}$ ist dann rekursiv wie folgt definiert:

$$\begin{aligned}
0|_{x=b} &= 0 \\
1|_{x=b} &= 1
\end{aligned} \qquad (\neg G)|_{x=b} &= \neg (G|_{x=b}) \\
(G \lor H)|_{x=b} &= G|_{x=b} \lor H|_{x=b}
\end{aligned}$$

$$y|_{x=b} = \begin{cases}
1 & \text{falls } x = y \text{ und } b = 1 \\
0 & \text{falls } x = y \text{ und } b = 0 \\
y & \text{sonst}
\end{cases} \qquad (G \land H)|_{x=b} = G|_{x=b} \land H|_{x=b}$$

$$(\neg G)\big|_{x=b} = \neg (G\big|_{x=b})$$

$$(G \lor H)\big|_{x=b} = G\big|_{x=b} \lor H\big|_{x=b}$$

$$(G \land H)\big|_{x=b} = G\big|_{x=b} \land H\big|_{x=b}$$

Top-Down-Ansatz

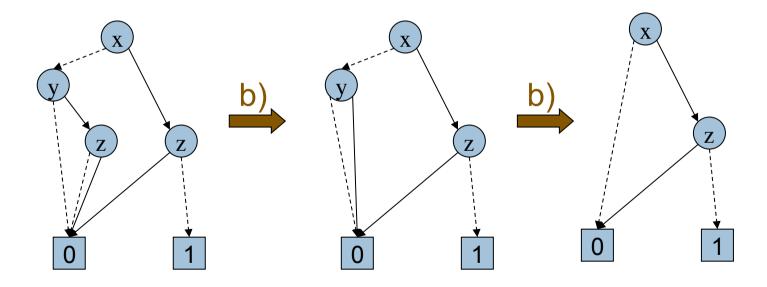
□ Shannon-Expansion:

$$f = (x \land f|_{x=1}) \lor (\neg x \land f|_{x=0})$$
$$= (x \Rightarrow f|_{x=1}) \land (\neg x \Rightarrow f|_{x=0})$$

- \blacksquare f_0 und f_1 werden Kofaktoren von f (bezüglich x) genannt.
- Benannt nach Claude Shannon (1916-2001)
- Top-Down-Ansatz berechnet BDDs mittels rekursiver
 Shannon-Expansion
 - □ d.h. $f_1 = f_{x=1}$, $f_0 = f_{x=0}$ für einen BDD-Knoten mit Variable x
 - Nachträgliche Reduktion erforderlich.

Top-Down-Ansatz: Nachträgliche Reduktion

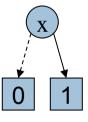
Bsp: $f = (x \lor y) \land (x \lor \neg y \lor z) \land \neg z$, z > y > x $f|_{x=0} = (0 \lor y) \land (0 \lor \neg y \lor z) \land \neg z = y \land (\neg y \lor z) \land \neg z$ $f|_{x=1} = (1 \lor y) \land (1 \lor \neg y \lor z) \land \neg z = \neg z$



Bottom-Up-Ansatz

- BDDs für atomare Formeln plus Konstruktoren für komplexe Formeln
 - Boolesche Konstanten:

■ Variablen:



- Komplexe Formeln:
 - Mittels BDD-Algorithmen

BDD-Algorithmus: "BDD-and"

Algorithm 1: BDD-and(a, b)

```
    if a = 0 or b = 0 then return 0
    if a = 1 then return b else if b = 1 then return a
    (x, a<sub>0</sub>, a<sub>1</sub>) = decompose(a); (y, b<sub>0</sub>, b<sub>1</sub>) = decompose(b)
    if x > y then return new-node(y, BDD-and(a, b<sub>0</sub>), BDD-and(a, b<sub>1</sub>))
    if x = y then return new-node(x, BDD-and(a<sub>0</sub>, b<sub>0</sub>), BDD-and(a<sub>1</sub>, b<sub>1</sub>))
    if x < y then return new-node(x, BDD-and(a<sub>0</sub>, b), BDD-and(a<sub>1</sub>, b))
```

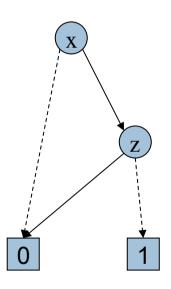
- $(x,f_0,f_1) = decompose(f)$ zerlegt Knoten in Variable und Kofaktoren.
- new-node(x,f₀,f₁) legt neuen BDD-Knoten mit Variable x und Kofaktoren f₀
 und f₁ an, sofern dieser noch nicht existiert. Ansonsten wird der bereits vorhandene Knoten verwendet.

Automatische Reduktion mittels new-node

- \square new-node(x,f₀,f₁) implementiert auch Reduktion:
 - Falls $f_0 = f_1$, so wird f_0 zurückgegeben.
 - Falls ein Knoten (x,f_0,f_1) bereits angelegt wurde, so wird dieser zurückgegeben (implementiert mittels Hash-Tabelle)

Bottom-Up-Ansatz: Implementierung

Hash-Tabelle zur Speicherung von nodes:



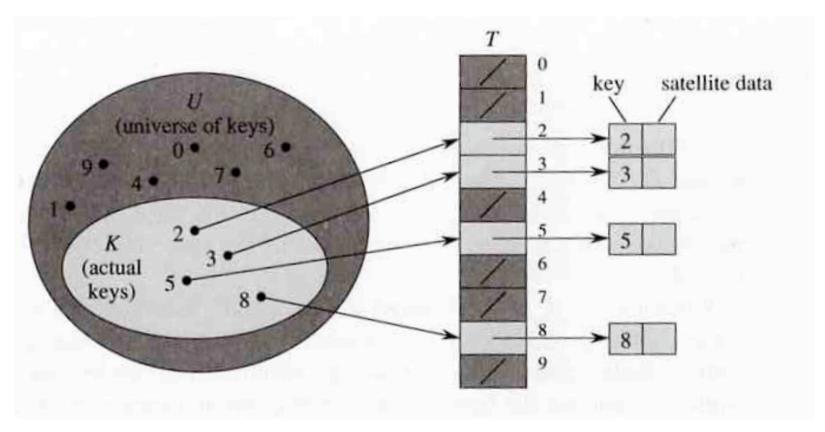
ldx	Var	Low	High
0	0		
1	1		
• 0 • 0 • 0			
6	Z	1	0
• 0 • 0 • 0			
8	х	0	6
• 0 • 0 • 0			

 Weitere Hash-Tabelle zum Zwischenspeichern von Ergebnissen der BDD-Konstruktions-Algorithmen

Hashing (I)

- Verallgemeinerung der "array"-Datenstruktur
 - Array: direkte Adressierung der Elemente anhand von Index.
 - Hash-Tabelle: Berechnung des Indexes, an dem ein Element abgelegt wurde durch Hash-Funktion.
- Erlaubt Suchen, Einfügen und Löschen von Elementen in O(1).

Daten-Speicherung in Array



[Quelle: Corman/Leiserson/Rivest: Introduction to Algorithms]

Daten-Speicherung in Hash-Tabelle

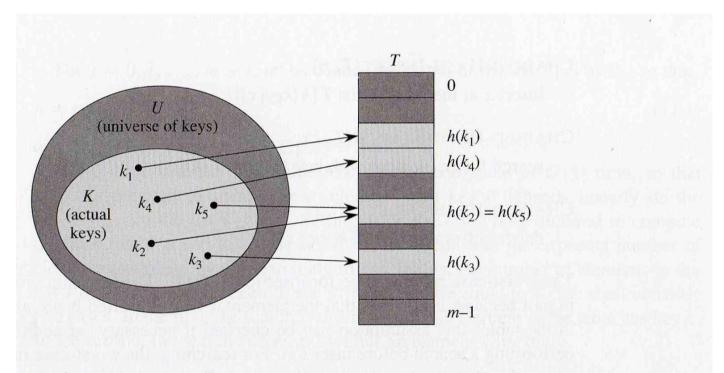


Figure 11.2 Using a hash function h to map keys to hash-table slots. Keys k_2 and k_5 map to the same slot, so they collide.

[Quelle: Corman/Leiserson/Rivest: Introduction to Algorithms]

Hash-Tabelle Kollisions-Auflösung mittels Chaining

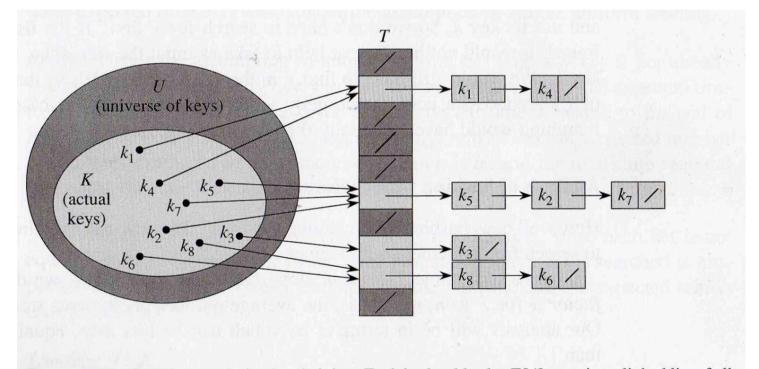


Figure 11.3 Collision resolution by chaining. Each hash-table slot T[j] contains a linked list of all the keys whose hash value is j. For example, $h(k_1) = h(k_4)$ and $h(k_5) = h(k_2) = h(k_7)$.

[Quelle: Corman/Leiserson/Rivest: Introduction to Algorithms]

Hash-Funktionen

- Berechnen Indizes in Hash-Tabelle
- Gewünschte Eigenschaften:
 - möglichst gute Verteilung auf alle Indizes
- □ Problem:
 - zu speichernde Elemente im Voraus nicht bekannt
- Typische Hash-Funktionen:

 - □ $h(k) = \lfloor m (k \text{ A mod } 1) \rfloor$ mit $A \in [0,1]$ (Multiplikations-Methode)

Hash-Tabellen: Kollisions-Auflösung

- Chaining
- Open Addressing
 - □ linear probing: $h(k,i) = (h'(k) + i) \mod m$
 - quadratic probing: $h(k,i) = (h'(k) + c i + d i^2) \mod m$
 - double hashing: $h(k,i) = (h_1(k) + i h_2(k)) \mod m$

BDD-Varianten (I)

- □ FDDs: [Kebschull, Schubert, Rosenstiel; 1992]
 - Functional Decision Diagrams
 - (Positive) Davio-Expansion anstelle der Shannon-Expansion

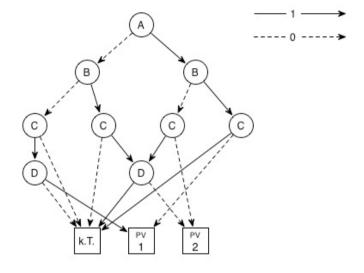
$$f = f \Big|_{x=0} \oplus x \wedge (f \Big|_{x=0} \oplus f \Big|_{x=1})$$

- Reduktion b) ersetzt durch Reduktion c): Falls $f_1 = 0$, so ersetze f durch f_0 .
- ZDDs: [Minato, 1992]
 - Zero-Suppressed Decision Diagrams
 - Zur Darstellung von Teilmengen einer endlichen Menge M
 - Unterschied BDD: fehlende Variablen auf Pfad werden als 0 interpretiert, nicht als don't care.

BDD-Varianten (II)

MTBDDs:

- Multi-Terminal BDDs
- Einsatz z.B. in der Darstellung von Fahrzeugstücklisten



ADDs:

- Arithmetic Decision Diagrams
- Ganze Zahlen in Terminalknoten
- "Gewichtete Terme"

BDD-Pakete im Internet

- □ CUDD [http://vlsi.colorado.edu/~fabio/CUDD]
 - CU (University of Colorado) DD package
 - BDDs, ZDDs, ADDs
 - Dynamische Variablen-Umordnung
 - □ C / C++
- □ Buddy [http://buddy.sourceforge.net/]
 - Universität Kopenhagen
 - C++, Dynamische Variablen-Umordnung
 - □ Graphische Ausgabe von BDDs