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"Program Arithmetic” ﬂ("

unsigned int

square check(unsigned int x) ls error ()
{

reachable?
unsigned int y X * X;
if (y == 33) { error(); }
return y;

\ Has x? = 33 mod 22
a solution?

Yes!
4 Solutions, e.g. 663169809
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Algebraic Properties

AT

Karlsruhe Institute of Technology

Mathematical Integers vs. Signed vs. Unsigned

Addition
signed int
Property Z (if defined)
Closure yes yes
Associativity
at(b+c) = yes yes
(at+b)+c
Commutativity
ety yes yes
Ex. of identity
et yes yes
Ex. of inverse
e = yes yes

unsigned int

yes

yes

yes

yes

no

Property

Closure

Associativity
a*(b*c) =
(a*b)*c

Commutativity
a*b = b*a

Ex. of identity

a*l = a

Ex. of inverse
ar*(a-l) =1

Multiplication

Z

yes

yes

yes

only 1 and -1

signed int

(if defined)

yes

yes

yes

yes

only 1 and -1

unsigned int

yes

yes

yes

yes

all odd
numbers

« Z: commutative ring with unity; integra

domain (division with remainder)

domain (no zero divisors); Euclidian

- Z/2kZ: also commutative ring with unity, but no integral domain (for k>1)
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Arithmetic in Z/2k7 (AT

stitute of Technology

* Definition:
ZinZ ={a,lae Z} with a=1{...,a—n,a,a+n,...}
- As usual, we identify a with a, where 0 < a < n, thus
Z712*7 = {0,...,2" - 1}
- Examples of arithmetic in Z/2*Z:
- When has the equation a - x = b a solution? Is it unique?
- Has the equation x? = 33 a solution in Z/28Z ? Is it unique?
 Basic facts:

0 Z:’zl ax; = b (mod m) is solvable for the unknowns x;, iff the greatest
common divisor of {ay, ...,a,,m} divides b .

« a has a multiplicative inverse mod m, iff gcd(a,m) = 1.

- a”' can be computed using the extended Euclidian algorithm or using
Euler's theorem, a~! = a?™-1 (mod m) . For m = 2%, ¢p(m) = ¢p(2F) = 2=
and thus a~! = ¢! (mod 25) .
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Solving Equations in Z/2x7 ﬂ("

- Given: Polynomial p(x)
- Goal: Solutions of p(x) =0 mod 2*

* First, consider the linear case: p(x) =a-x—b, i.e. solving the equationa-x =5
modulo m = 2~

- If ais invertible, then x =b-a~! is the (unique) solution. (This is the case, if a
Is odd.)

- Otherwise, a - x = b has solutions, iff ged(a,2%)|b . The solution is not unique,
but a particular solution is given by x = b/a.

- Theorem: The congruence ax = b (mod m) is soluble in integers if, and only |f,
gcd(a, m) | b. The number of incongruent solutions modulo m is gcd(a, m).

« How can we find all solutions?

» For all solutions x, the following holds: 3¢ . ax + #m = b. Having a first solution
Xo, all solutions are given by x, = x, + k - (m/ gcd(a, m)) for 0 < k < ged(a, m) -
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Solving Systems of Linear Congruences ﬂ("

- Given a system § = {E;} of linear congruences (mod m = 2k) over n variables,
with
E’J-:Zax = b, mod 2% |

i

find its solution set.
» Algorithm [Ganesh, 2007]:

- If there is an odd coefficient a;, solve equation E; for xi and substitute x; in
all other equations. If Ejcannot be solved for x;, i.e. if ged{a;,....,q;,,m} 1 b;,
then there is no solution to S.

- If all coefficients a; are even, divide all aji, b; by two and decrease k by one.

* Repeat the algorithm with the resulting system of congruences and stop
with "success” if there is only one solved equation left.

* Properties:

» The algorithm is a sound and complete decision procedure for linear
congruences.
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Solving Systems of Linear Congruences ﬂ("

- Example: Solve the following system of congruences modulo 8:

3x+4y+2z=0
2x+2y =6
4y +2x+2z=0

* Note:

« Ganesh considers the unknowns as bit-vectors of length k; when the
system is divided by 2, the highest bit in each bit-vector is dropped (i.e.
left unconstrained)

* Question:

- How can the set of all solutions of S be determined after the algorithm
finished?
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Solving Non-Linear Congruences ﬂ("

- Task: Given a polynomial p(x), find all solutions of p(x) = 0 mod 2* .
- Hensel lifting algorithm (special case for m = 2k):

1. [k=1] Check, whether p(x) =0 mod 2 has a solution. If not, exit with
"no solution”.

2. [k—k+1] Let {x;} be the set of solutions for p(x) =0 mod 2*. We
distinguish two cases to lift each x; from k to k+1:

A. If p'(x) =0 mod 2: [0 or 2 lifted solutions]
1. If p(x) 0 mod 2**! x; cannot be lifted
2. Otherwise there are two lifted solutions x* = x; + ¢ - 2k te {0,1}

B. If p'(x;) 0 mod 2: [unique lifting]

x* =x;— p(x) mod 2!

* Note: Hensel-lifting also works for multivariate polynomials. However, already
the base case (k=1) is NP-complete. (Why?)
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Solving Non-Linear Congruences AT

- Example: x* =33 mod 2*
. p(x) =x*>—33, p'(x)=2x
» [k=1, mod 2]: x2=1 mod 2 has solution x*=1

« [k=2, mod 4]: Try to lift x*=1: p'(x*)=0 mod 2, thus 0 or 2 lifted solutions
pP(x*)=0 mod 4, thus 2 liftings: x*'= x*+2t = {1, 3}

- [k=3, mod 8]:
- Lifting x*=1: 0 or 2 lifted solutions, p(x*)=0 mod 8, x*' = {1, 5}
- Lifting x*=3: 0 or 2 lifted solutions, p(x*)=0 mod 8, x*' = {3, 7 }
- [k=4, mod 16]:

« Lifting x*=1: p(x*)=0 mod 16, x*' ={1, 9 }
- Lifting x*=3: p(x*)=8 mod 16, no lifting

- Lifting x*=5: p(x*)=8 mod 16, no lifting

« Lifting x*=7: p(x*)=0 mod 16, x*' = {7, 15}
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ensel’s Lemma AT

- Theorem: Let f(x) be a polynomial with integer coefficients, k =m > 0, r an
integer with f(r) =0 mod p*. Then if f(r)#0 mod p, there is an integer s such

that f(s) =0 mod p**™ and s=r mod p* . So s is a ,lifting“ of r to a root mod
p™*. Moreover, s is unique mod p™**.

- Proof: Consider the Taylor series expansion of f:

f(r+p*t) = f(r) + F(N)pFt + % ke 4 .

Since m < k, all terms but the first two \}anish mod pk+m, so
f(r+ p*t) = f(r) + f(r)p*t (mod p**™)
Setting f(r + p*f) = 0, we can solve for t:

f(M)+fpt=0 (mod p**™)

Pkt = — @ (mod p*™)
')
fr)
pk

J(r)

t=—

(mod p™)
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Notes to Hensel’s Lemma AT

- f(n/p* is an integer by the lemma’s assumption f(r) =0 mod p*.
- f(r) has a multiplicative inverse mod p™, as f(r) #0 mod p.

- The solution s unique mod pk+m is given by s = r + p*t = r — f(r)/a , where
a=fr"" (modp™.

- Case without a unique lifting (restricted to the case m=1 in the Lemma):

- Assume f(r)=0 mod p* and f(r) =0 mod p. Then s =r mod p* implies
f(r) =f(s) mod p**! by the Taylor expansion, i.e. f(r + tp*) = f(r) mod p**!
for all integers t. We thus have two cases:

- f(r)£0 mod p*': Then there is no lifting from k to k+1.

- f(r)=0 mod p*': Then every lifting of r from k to k+1 is a root mod pk+,
l.e. s=r+1tp* is a solution for each t € {0,....,p — 1} .
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