

Entscheidungsverfahren mit Anwendungen in der Softwareverifikation

IV: Lineare ganzzahlige Arithmetik

Carsten Sinz Institut für Theoretische Informatik

07.11.2018

Organisatorisches: Übungen

- · Übungen finden 14-tägig am Dienstag statt, erster Termin: 13.11.2018
 - 11:30-13:00 Uhr, Seminarraum 236
- Übungen bestehen aus theoretischen und praktischen Aufgaben (praktisch: Programmieren)
 - · Lösungen müssen nicht abgegeben werden, aber in der Übung besprochen
- Insgesamt wird es mindestens 120 Punkte für Übungsaufgaben geben, plus zusätzliche Bonuspunkte
- Mindestens 60 Punkte sind zum Bestehen der Übungen erforderlich und Voraussetzung, um die mündliche Prüfung anzutreten
- Durch Übungspunkte kann die Note verbessert werden:

• ≥80 Punkte: +0,3

• ≥95 Punkte: +0,7

• ≥110 Punkte: +1,0

Theorie der linearen ganzzahligen Arithmetik

LIA: Linear Integer Arithmetic

Signatur:

$$\sum = \{ =, >, \geq, +, -, ..., -2, -1, 0, 1, 2, ... \}$$

Beispiele:

- 1. $8x + 6y \le 0$
- 2. $4y \ge 1$
- 3x + 3y = 2

Beobachtungen:

- 1. kann vereinfacht werden: $4x + 3y \le 0$
- 2. kann verschärft werden: $y \ge \lceil 1/4 \rceil = 1$
- 3. Keine ganzzahlige Lösung

Syntax

- Boolesche Kombination von linearen Gleichungen und Ungleichungen
- · Darstellung:
 - Lineare Gleichungen: $E = \left\{\sum_{i=1}^n a_{j,i} x_i = c_j\right\}_{1 \le j \le m}$
 - Lineare Ungleichungen: $I = \left\{\sum_{i=1}^n b_{j,i} x_i \leq d_j\right\}_{1 \leq j \leq m'}$
- Entwicklung eines Entscheidungsverfahrens in mehreren Schritten:
 - 1. Konjunktion von Gleichungen
 - 2. Konjunktion von Gleichungen und Ungleichungen
 - 3. Beliebige Boolsche Kombinationen von Gleichungen und Ungleichungen

Lineare Gleichungen

- Eingabe: Menge von Gleichungen der Form $a_1x_1 + \cdots + a_nx_n = c$
- Ausgabe: Gleichungssystem in gelöster Form ($x_i = ..., "Dreiecksform")$ oder Ausgabe "unerfüllbar"
- Vorverarbeitung (für alle Gleichungen):
 - Erfüllbarkeitstest: Falls $ggT(\{a_i\}_{1 \leq i \leq n}) \not\mid c$, gib aus "unerfüllbar"
 - Normalisieren: Teile alle a_i und c durch $ggT(\{a_i\}_{1 \le i \le n})$

Beispiele:

$$12x + 15y = 7$$

Erfüllbarkeitstest: $ggT({a_i}) = 3$, $3 \nmid 7$, also Gleichung nicht erfüllbar

$$24x + 12y + 10z = 4$$

Erfüllbarkeitstest: $ggT({a_i}) = 2$, $2 \mid 4$, also Gleichung erfüllbar

Normalisieren: 12x + 6y + 5z = 2

Lineare Gleichungen (II)

- Weiteres Vorgehen:
 Eliminiere Gleichungen schrittweise durch Auflösen nach x_i
- Falls es eine Gleichung gibt mit $|a_k| = 1$, löse diese Gleichung nach x_k auf und ersetze x_k in allen anderen Gleichungen
- Falls es kein solches a_k gibt, wähle eine Gleichung E und ein a_k mit **kleinstem Betrag** und mache a_k bei Bedarf positiv (durch Multiplikation der Gleichung mit -1)
- Definiere:
 - $a \mod' b := a b \lfloor a/b + 1/2 \rfloor$
 - Setze $m := a_k + 1$
 - Damit gilt: $a_k \mod' m = -1$
- Erzeuge neue Variable σ und füge neue Gleichung hinzu:

$$m\sigma = \sum_{i} (a_i \mod' m) \cdot x_i - (c \mod' m)$$

Lineare Gleichungen (III)

• Löse die Gleichung $m\sigma = \sum_{i} (a_i \mod' m) \cdot x_i - (c \mod' m)$ nach x_k auf (beachte: $a_k \mod' m = -1$):

$$m\sigma = -x_k + \sum_{i \neq k} (a_i \mod' m) \cdot x_i - (c \mod' m)$$

$$x_k = -m\sigma + \sum_{i \neq k} (a_i \mod' m) \cdot x_i - (c \mod' m)$$

- Ersetze nun dieses xk in allen Gleichungen
- Aus der ursprünglichen Gleichung E: $a_1x_1 + \cdots + a_nx_n = c$ (ang. $a_k > 0$) wird damit:

$$a_k x_k + \sum_{i \neq k} a_i x_i = c$$

$$-a_k m \sigma + a_k \sum_{i \neq k} (a_i \mod' m) \cdot x_i - a_k (c \mod' m) + \sum_{i \neq k} a_i x_i = c$$

$$-a_k m \sigma + \sum_{i \neq k} (a_i + a_k (a_i \mod' m)) \cdot x_i = c + a_k (c \mod' m)$$

$$-a_k \sigma + \sum_{i \neq k} (\lfloor a_i / m + \frac{1}{2} \rfloor + (a_i \mod' m)) \cdot x_i = \lfloor c / m + \frac{1}{2} \rfloor + (c \mod' m)$$

Lineare Gleichungen (IV)

- Was haben wir gewonnen?
 - x_k eliminiert, aber neue Variable σ
 - Koeffizienten in neuer Gleichung E' kleiner

• Beispiel:
$$7x + 12y + 31z = 17$$

 $3x + 5y + 14z = 7$

- Eliminierung:
 - 1. x in Gleichung 1: $x = -8\alpha 4y z 1$ (neue Variable α) neue Gleichungen: $\{ -7\alpha 2y + 3z = 3, -24\alpha 7y + 11z = 10 \}$
 - 2. y in neuer Gleichung 1: $y = \alpha + 3\beta$ (neue Variable β) neue Gleichungen: $\{-3\alpha 2\beta + z = 1, -31\alpha 21\beta + 11z = 10\}$
 - 3. z in neuer Gleichung 1: $z = 3\alpha + 2\beta + 1$ (keine neue Variable) neue Gleichungen: $\{2\alpha + \beta = -1\}$
 - 4. Direktes Lösen der letzten Gleichung: $\{ \beta = -2\alpha 1 \}$
- Rücksubstitution liefert Lösung: (a bel. gewählt, z.B. $\alpha = 0$):

•
$$\beta = -1$$
, $z = -1$, $y = -3$, $x = 12y$

Gleichungen und Ungleichungen

- Erster Schritt: Eliminiere Gleichungen (ersetze dabei Variablen auch in Ungleichungen)
 - → Reines System von Ungleichungen
- Verwende Omega-Test (Variante von Fourier-Motzkin-Elimination für ganze Zahlen)
 - Fourier-Motzkin:
 - entdeckt 1826 durch Fourier, wiederentdeckt 1936 durch Motzkin
 - löst Ungleichungen über rationalen Zahlen
 - Grundlegende Idee: selektiere Variable und eliminiere diese; wiederhole dies, bis nur noch eine Variable verbleibt

Fourier-Motzkin

- · Basis-Idee:
 - Wähle zu eliminierende Variable aus: Xk
 - Schreibe Ungleichungen so um, dass sie obere und untere Schranken für x_k ausdrücken:

$$\sum_{i=1}^{n} a_i x_i \le c \qquad \Rightarrow \qquad a_k x_k \le c - \sum_{i \ne k}^{n} a_i x_i$$

- Falls $a_k > 0$: obere Schranke, ansonsten untere Schranke
- Eliminiere x_k
- **Beispiele:** Angenommen, wir wollen *x* eliminieren. Handelt es sich um obere oder untere Schranken?

$$x - y \le 0$$

 $x - z \le 0$
 $-x + y + 2z \le 0$
 $-z < -1$

Fourier-Motzkin

- Elimination von x_k:
 - Wähle sämtliche Gleichungen aus, die obere/untere Schranken für x_k liefern:

$$\beta_l := c - \sum_{i \neq k}^n a_i x_i \le a_k x_k \qquad a'_k x_k \le c' - \sum_{i \neq k}^n a'_i x_i := \beta_u$$

(für $a_k > 0$)

Für jedes Paar von oberer/unterer Schranke haben wir:

$$\frac{\beta_l}{a_k} \le x_k \le \frac{\beta_u}{a_k'}$$

· Dieses Ungleichungspaar besitzt genau dann eine rationale Lösung, falls

$$\frac{\beta_l}{a_k} \le \frac{\beta_u}{a_k'}$$

Füge all diese Ungleichung hinzu

Fourier-Motzkin: Beispiel

· Gegeben:

- (1) $x y \le 0$
- (2) $x z \le 0$
- $(4) -z \leq -1$

obere Schranke für x

obere Schranke für x

(3) $-x + y + 2z \le 0$ unter Schranke für x

- Eliminiere x:
 - Aus Paar (1)-(3): $y + 2z \le x \le y$ \Rightarrow $y + 2z \le y$ \Rightarrow $2z \le 0$ (5)
 - Aus Paar (2)-(3): $y + 2z \le x \le z$ \Rightarrow $y + 2z \le z$ \Rightarrow $y + z \le 0$ (6)

- (1), (2), (3) können nun gestrichen werden
- Fliminiere 7:
 - (4) untere Schranke, (5), (6) obere Schranken
 - Aus Paar (4)-(5): $1 \le z \le 0 \implies 1 \le 0$
 - Widerspruch!

Von Fourier-Motzkin zum Omega-Test

- Fourier-Motzkin: rationale Lösungen
- Omega-Test: ganzzahlige Lösungen
- Idee des Omega-Tests:
 - Berechne zuerst Lösungen für die "rationale / reelle Relaxation" des ganzzahligen Problems ("real shadow"):

$$\beta_l \le a_k x_k \qquad a'_k x_k \le \beta_u \quad \Rightarrow \quad \beta_l a'_k \le a_k a'_k x_k \le \beta_u a_k \quad \Rightarrow \quad \beta_l a'_k \le \beta_u a_k$$

- Wenn $\beta_l a_k' \leq \beta_u a_k$ keine Lösung besitzt, wissen wir, dass das Problem unerfüllbar ist
- Wenn $\beta_l a_k' \leq \beta_u a_k$ eine ganzzahlige Lösung besitzt, so kann es trotzdem sein, dass das Ursprungsproblem keine Lösung hat. (Warum?)

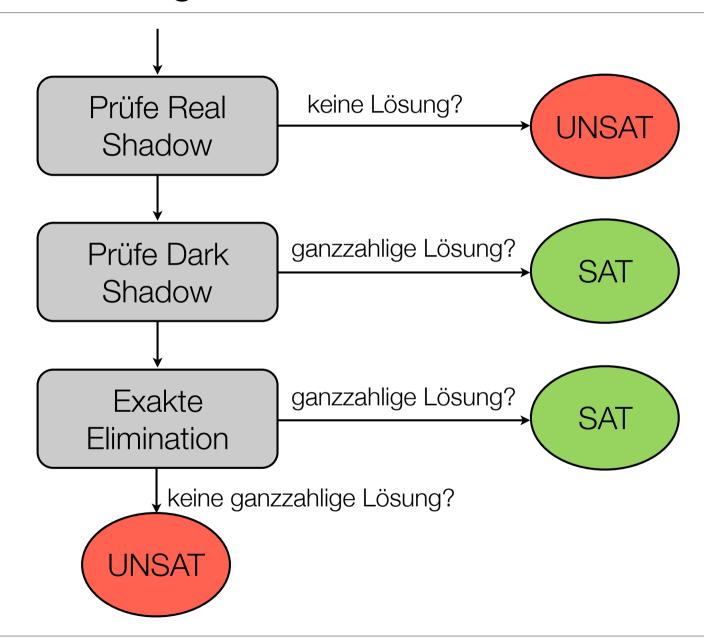
Omega-Test: Dark Shadow

- Es kann sein, dass es eine ganzzahlige Lösung für $\beta_l a_k' \leq \beta_u a_k$ gibt, nicht aber für $\beta_l a_k' \leq a_k a_k' x_k \leq \beta_u a_k$.
 - Kein Vielfaches von $a_k a'_k$ ist zwischen $\beta_l a_k$ und $\beta_u a_k$.
- Prüfe nun die folgende Ungleichung ("dark shadow"):

$$\beta_u a_k - \beta_l a_k' \ge (a_k - 1)(a_k' - 1)$$

- Falls diese eine Lösung besitzt, so wissen wir, dass auch das Ursprungsproblem eine Lösung hat
- Falls nicht, muss eine exakte Elimination durchgeführt werden
 - Wähle den größten Koeffizienten a'_k für x_k in einer oberen Schranke
 - Prüfe für alle $0 \le i \le (a_k a'_k a_k a'_k)/a'_k$, ob eine Lösung existiert mit der zusätzlichen Bedingung $a_k x_k = \beta_l + i$.

Übersicht Omega-Test



Omega-Test: Beispiel

Betrachte das folgende System P von Ungleichungen in LIA:

$$3 \le 11x + 13y \le 21$$

-8 \le 7x - 9y \le 6

- Keine Gleichungen, daher Start der Fourier-Motzkin-Elimination.
- Wir wollen zuerst x eliminieren:

$$3 - 13y \le 11x \le 21 - 13y$$

 $-8 + 9y \le 7x \le 6 + 9y$
 2

- "Real shadow": $\beta_l a_k' \leq \beta_u a_k$ für Ungleichungspaar $\beta_l a_k' \leq a_k a_k' x_k \leq \beta_u a_k$
 - Paar 1 (1)-1): $\beta_l = 3-13y$, $\beta_u = 21-13y$, $a_k = a'_k = 11$:
 - \rightarrow (3-13y)·11 ≤ (21-13y)·11
 - → 33 ≤ 231
 - Paar 2: (1)-2): $\beta_l = 3-13y$, $\beta_u = 6+9y$, $a_k = 11$, $a'_k = 7$:
 - \rightarrow (3-13y)·7 ≤ (6+9y)·11
 - \rightarrow 21-91y ≤ 66+99y \rightarrow 0 ≤ 45+190y

Omega-Test: Beispiel

- "Real shadow": $\beta_l a_k' \leq \beta_u a_k$ für Ungleichungspaar $\beta_l a_k' \leq a_k a_k' x_k \leq \beta_u a_k$
 - Paar 3: 98 ≥ 0 ✓
 - Paar 4: $235 \ge 190y$
- Insgesamt: Neues System nach Eliminierung von x:

$$-45 \le 190y \le 235$$

- Besitzt dieses ganzzahlige Lösungen: ja! (y = 0 oder y = 1)
 - → Prüfung des **real shadow** liefert also kein verwertbares Ergebnis!
 - → Jetzt Prüfung des dark shadow!
- "Dark shadow" wird geprüft anhand der Gleichung $\beta_u a_k \beta_l a_k' \ge (a_k 1)(a_k' 1)$
 - Paar 1 (1)-1): $\beta_l = 3-13y$, $\beta_u = 21-13y$, $a_k = a'_k = 11$:
 - \rightarrow (21-13y)·11 (3-13y)·11 ≥ 100
 - → 231-143y-33+143y \ge 100 → 198 \ge 100 \checkmark

Omega-Test: Beispiel

Generierung der 3 weiteren Paare liefert für den dark shadow:

$$15 \le 190y \le 175$$

- Dieses System besitzt keine ganzzahlige Lösung!
- Also: Exakte Elimination erforderlich!
 - Wir müssen für jede untere Schranke prüfen, ob $P \cup \{a_k x_k = \beta_l + i\}$ eine ganzzahlige Lösung besitzt für $0 \le i \le (a_k a'_k a_k a'_k)/a'_k$ mit $a'_k = 11$.
 - 1. $\beta_i = 3-13y$, $a_k = 11$: zusätzliche Gleichung: $P_i = \{ 11x = 3-13y+i \}$ mit $0 \le i \le (11\cdot11-22)/11 = 9$ Für kein i mit $0 \le i \le 9$ besitzt $P \cup P_i$ eine ganzzahlige Lösung.
 - 2. $\beta_i = -8 + 9y$, $a_k = 7$: zusätzliche Gleichung: $P_i = \{ 7x = -8 + 9y + i \}$ mit $0 \le i \le \lfloor (7 \cdot 11 7 11)/11 \rfloor = 5$

Für kein *i* mit $0 \le i \le 5$ besitzt $P \cup P_i$ eine ganzzahlige Lösung.

→ Das Ungleichungssystem P besitzt keine ganzzahlige Lösung!