Linking Functional Requirements and Software Verification™

Hendrik Post, Carsten Sinz
University of Karlsruhe
Institute for Theoretical Computer Science
Karlsruhe, Germany
{post, sinz} @ira.uka.de

Abstract

Synchronization between component requirements and
implementation centric tests remains a challenge that is
usually addressed by requirements reviews with testers and
traceability policies. The claim of this work is that link-
ing requirements, their scenario-based formalizations, and
software verification provides a promising extension to this
approach. Formalized scenarios, for example in the form of
low-level assume/assert statements in C, are easier to trace
to requirements than traditional test sets. For a verifica-
tion engineer, they offer an opportunity to better participate
in requirements changes. Changes in requirements can be
more easily propagated because adapting formalized sce-
narios is often easier than deriving and updating a large
set of test cases. The proposed idea is evaluated in a case
study encompassing over 50 functional requirements of an
automotive software developed at Robert Bosch GmbH. Re-
sults indicate that requirement formalization together with
formal verification leads to the discovery of implementation
problems missed in a traditional testing process.

1. Introduction

The importance of linking testing and requirements, e.g.,
via test traceability has been investigated in a recent case
study reporting practices and experiences from Finnish or-
ganizations [19] and is supported by previous work, e.g., by
Graham [9]. A tight link will likely improve the outcome
of the software development process. Lindstrom [13] even
claims that missed links between people or documents will
lead to a flawed product.

In this work, an emerging trend in industry, employ-
ing software verification, is integrated into the development

*This work was supported in part by the “Concept for the Future” of
Karlsruhe Institute of Technology within the framework of the German
Excellence Initiative.

Florian Merz, Thomas Gorges, Thomas Kropf
Robert Bosch GmbH
Chassis Systems Control
Leonberg, Germany
Thomas.Gorges @de.bosch.com

process. Software verification is a technique to provide for-
mal guarantees that software implementations conform to
their specifications. Recently, several approaches for veri-
fication have reached a status where successful integration
into the industrial software development process has been
achieved [1, 4, 5, 12].

The applicability of formal methods is also reflected
in formal requirements analysis. The aim of this ap-
proach is the qualitative improvement of requirement doc-
uments by directly translating them into a formal language.
The goals—formally proved consistency and early defect
detection—are shared between both approaches. A differ-
ence, though, is that integration of formal methods is on the
implementation level for verification, and on the level of
models (documents or artifacts) for requirements analysis.

If testing and requirements need to be linked, the same
should hold for requirements and software verification. We
therefore review and perform software verification from the
perspective of checking consistency between component re-
quirements and C implementations.

In contrast to other software verification case studies,
specifications are not derived from an abstract correctness
goal (e.g., termination), but from a set of dynamically
changing functional requirements. It is an open question,
however, whether verification can handle the constraints
posed by industrial development processes and how the
technique can be linked to component requirements.

The case study performed by Uusitalo et al.[19] analyzed
best practices and experiences for linking testing and re-
quirements by interviewing experts. We cannot adapt their
interviewing technique in our setting because verification
is not yet integrated into the industrial development pro-
cess. Therefore we conducted our own case study, where
we formalize a set of 50 requirements, and verify that soft-
ware releases conform to them using an automatic tech-
nique called software bounded model checking [3]. We use
the tool CBMC developed by Daniel Kroning at the Univer-
sity of Oxford as bounded model checker. Even though the
application of an academic tool is challenging by itself, we

provide detailed insights on the experience of applying ver-
ification concurrently with changing requirements and over
multiple releases.

Our conclusion is that the need for linking testing and re-
quirements should be extended to incorporate verification.
The quality improvement of the process is indicated by re-
porting ten safety-critical violations of functional require-
ments.

The software we analyze in this paper is part of a prod-
uct for automotive driver assistance developed by Robert
Bosch GmbH. In the case study, three components imple-
menting redundant safety monitors are covered. They are
highly safety critical, as they implement a watch-dog func-
tionality on top of the main systems. A common functional
requirement in this domain is that the driver assistant sys-
tem shall remain passive if any kind of internal error, e.g.
video blindness, has occurred.

2. Software Verification

Even though it is well known that proving non-trivial
properties of programs is undecidable in general, techniques
have been developed that are able to deal surprisingly well
with industrial software. One major approach is correctness
by design, where the whole development process is centered
around model-based preservation of correctness properties.
The central notion of this field is model refinement that links
initial, abstract mathematical models with more detailed
ones that can eventually be used to programmatically gener-
ate correct source code. Correctness by design is certainly
appealing, but it is still not widely used in industry. The rea-
sons for this are that, first, generated programs cannot eas-
ily be modified after being generated, and, second, that each
requirement change triggers a complete reconstruction, in-
cluding all intermediate steps down to the generated source
code. As the process is not automated—because of the pow-
erful formalisms used—practitioners seem to be reluctant to
perform this development approach.

The more popular alternative is implementation-
specification based consistency checking. Implementation
is achieved by a conventional development process and ver-
ification is performed, similar to testing, on the implemen-
tation using a low-level formal specification. We claim that
the latter approach is more easily integrated into industrial
practice, as no need for changing existing processes arises.
Our work solely deals with implementation-specification
based verification.

In this work, the verification backend CBMC [3], a soft-
ware bounded model checker for C, is used. CBMC auto-
matically verifies that all conditions formulated in assume
and assert statements evaluate to true for every program
execution of bounded length. It is notable that in our case
study the bound is set large enough such that sound and

complete verification without manual specification of in-
variants is achieved.

2.1. Specifications on the Implementation
Level

In order to make the process of verification more
transparent to both test and requirement engineers, we
have chosen a low-level formalism for specification that
resembles the syntax and expressiveness of a normal
imperative programming language. Assert/assume based
specifications make use of the fact that most interesting
functional properties can be expressed in terms of the
source code language. Similar to test cases, one can
insert assert (expr) statements into the code. The
verification condition is encoded in expr. We illustrate
this by a small example:

// INPUT:

// int a, the dividend, a is non-negative
// int b, the divisor

// OUTPUT:

// int ¢, if "(b!=0)" the result of "a/b",
// else return int constant UNDEF

int divide (int a, int b) {
int result;
assume (a >= 0);

if (b==
result = UNDEF;
else
result = a / b;
assert((b != 0) ?
result == (a / Db)
result == UNDEF

)i
return result;

}

The above code shows a C implementation of a division
function that catches the special case that the divisor may
be zero. The non-formal specification is present in the com-
ments. The formalization of the specification is encoded
in the assume and assert statements. Conditions that
must hold prior to the execution of a function are classi-
cally named preconditions and related to assume state-
ments. Conditions that must hold after the function has been
executed (if the preconditions hold), are called postcondi-
tions, and are encoded in assert statements. Formalizing
functional properties in this way is easy to understand for
testers. It seems less obvious, though, how to link these C
expressions to component requirements.

2.2. Requirements Formalization by Sce-
narios

Requirements are first filtered whether they actually con-
tain functional specifications that can be checked in the im-

plementation. Similar to scenario-based testing [16] they
can be expressed in a description under which circum-
stances restrictions on the output should hold. An exam-
ple for this the following requirement taken from our case-
study:

Requirement 1 If the video sensor is not working, the
driver assistance system shall not act.

In the following we will derive a formal scenario out of
the textual description. At first, design documentation needs
to be consulted. For this product, design artifacts consist
of textual documentation, an additional tool-supported doc-
umentation defining the semantics of every interface vari-
able, as well as developer knowledge. The first question is
how the fact that the video sensor works can be observed
in the C implementation of the product. By the design doc-
umentation we know that this is encoded in the following
way:

Design Artifact 1 The variable VIDEO_SENSOR is set to
one if and only if the video sensor is working.

This information already allows to formalize the
assume part of the scenario: assume (VIDEO_SENSOR
!= 1). In order to complete the scenario, the assert
condition has to be added:

Design Artifact 2 The driver assistance system acts if and
only if the result of the vet o function is not t rue.

According to the above design information we can
complement the scenario: _Bool vetoed = veto();
assert (vetoed==true) ;. The embedding of the two
parts is performed by a test (or verification) function derived
from a general pattern:

// task called every 100ms
main ()
{

havoc () ;

assume (VIDEO_SENSOR != 1);

component_task () ;

_Bool vetoed = vetol();
assert (vetoed==true);

The havoc () function un-restricts the global state of
the component, e.g. if a global variable is initialized to zero,
havoc () will “remove” this assignment in order to obtain
an overapproximation of possible inputs. This is necessary
in order to prove that the code is correct for every possi-
ble input. Otherwise executions after the first execution of
main would not be included in the analysis.

We now can define the term formalized scenario:

Definition 1 A formalized scenario is a pair of C expres-
sions (pre,post) encoding the precondition pre and the
postcondition post for a C function.

For the given example, the formalization of the scenario
looks as follows:

((VIDEO_SENSOR != 1), (vetoed==true))

Even though the definition of scenarios is of a low-level
kind and restricted to pre- and postconditions on a func-
tional level, we found that almost all requirements we ana-
lyzed could be easily formalized this way.

In addition to the formal parts of the scenario, we
maintain an implementation of the automatically derived
havoc () function for each component. The link between
a formalized scenario and component requirements is main-
tained in a document.

Our method does not require full formalization of a com-
ponent’s functionality. If the given precondition is not
strong enough, however, this might result in spurious er-
rors. In such a case the formalization of the scenario has to
be extended.

3. The Case Study

Our case study employing software bounded model
checking has been performed in parallel to a standard devel-
opment process. In addition to requirements engineers, test
managers and testers, a verification engineer (in our case a
student working on his master thesis) was added to the de-
velopment team. The task of this engineer is to formalize
requirements into scenarios. Over time, the requirements
need to be updated and results have to be communicated to
developers as well as to requirements engineers.

3.1. Driver Assistance Software

In our case study we consider three software compo-
nents. The first component is the software part of the Adap-
tive Cruise Control (ACC) system. ACC is applied in cars
to monitor the current traffic situation. If an obstacle, e.g.
a truck, is detected in front of the car, the driving speed is
adapted such that the driver does not need to hit the breaks
manually. If the obstacle does not block the road anymore,
ACC accelerates the car to a pre-selected driving speed.
ACC is a driver comfort system. Nevertheless errors in
requirements or implementations could lead to unexpected
safety-critical situations, e.g. the car does not slow down
even though the driver expects it to do so.

Two other similar components are also incorporated into
our study. For confidentiality reasons, we had to anonymize
their names and requirements (the components will be de-
noted by B and C in the subsequent text).

3.2. Process

For each requirements and software release the following
sequence of steps is performed:

1. Filter requirements to determine whether they can at
all be violated by the implementation. Non-functional
requirements like “a Simulink model must be pro-
vided” are excluded from the verification.

2. Map new requirements to former formalized scenarios,
if they exist. Otherwise set up a new scenario.

3. Ifrequirements were changed since the last verification
run, update all scenarios that are linked to them.

4. Formally verify all scenarios (using the software
bounded model checker) where either the formaliza-
tion or the corresponding implementation changed.

5. Report results to requirements engineers and to devel-
opers.

6. Check that the problems do not persist after bugfixes.

In our experiments, two releases of the requirements
documents and numerous small updates on the C implemen-
tation were covered. The verification engineer interacted
with a requirements management system which is used to
manage customer requirements in textual form. Design ar-
tifacts were also at hand. In some cases, developers had to
be asked in order to gain additional information about the
encoding of some system states.

Mapping changed requirements to existing scenarios, as
mentioned in steps 2 and 3, turned out to be easily man-
ageable: The terms, e.g. ’sensor_A’, occurring in the nat-
ural language description limits the set of possibly related
scenarios. In addition, requirements are tagged as 'new’,
’changed’ or "unchanged’.

Note that the creation of scenarios is a task that involves a
dependency analysis of the requirements. In our experiment
several artifacts are linked. The most common case is a
distinction between different reasons that might lead to the
same error (denoted by ¢ in what follows):

Requirement 2 If sensor_A fails, ¢.
Requirement 3 If sensor_B fails, ¢.
Requirement 4 If any sensor fails, ¢.
Requirement 5 If no sensor fails, —¢.

In the above example, ¢ stands for an arbitrary constraint
on the output of the function (e.g., vetoed == true).
These cases are inherently linked together. One could for-
malize one scenario that encompasses all conditions or split

them into four cases. In any case the terms any sensors and
no sensor are defined in terms of the set of concrete sen-
sors, e.g. {sensor_A, sensor_B}. The exact mapping of re-
quirements to scenarios is a matter of granularity and varies
for different components (cf. Table 1). A finer granular-
ity allows for more detailed results. A scenario that is not
matched by the behavior of a C program may violate multi-
ple or single requirements as indicated in Table 2.

3.3. Technical Results

Results we have obtained are of two kinds: (1) about the
requirements formalization process, and (2) about the ver-
ification process using software bounded model checking.
For the latter, we report on runtimes for the verification tool
as well as on the number of problems we found.

Formalizing Requirements. Table 1 documents the
amount of requirements that we have translated into sce-
narios during two releases of the requirements documents'.
It should be noted that the set of requirements varied to a
great extent between the two releases.

In Table 1, the first column indicates the name of the
component to check. The further columns, in turn, denote
the number of total requirements specified for the compo-
nent over all releases, the number of requirements given in
the first and second release, the number of requirements that
express functional properties of the component. The second
but last column shows the number of functional components
that were accessible to formalization, and the last column
gives the number of formal scenarios we created out of the
formalizable requirements. For component ACC, some re-
quirements were split up into multiple scenarios.

We were able to formalize 70%, 63%, and 100% of the
functional requirements for the three components that we
analyzed. Some requirements were not accessible for sce-
nario formalization, however. The reasons for this are as
follows:

e In case of component B, the second release of the re-
quirements documents occurred only a few days before
the project ended. Due to a lack of time, new require-
ments were only partially considered.

e Two requirements were actually misclassified, as they
restricted the behavior of other components of the sys-
tem. While creating the scenarios, this misclassifi-
cation was detected and reported to the requirements
managers. As a consequence they did not appear in
the second release.

'Due to the fact that the verification engineer performing the experi-
ments was not a formal member of the company, access to the requirements
management system was restricted to two releases of the requirements doc-
uments.

Table 1. Number of formalized requirements, by component.

| Component | Total Requirements | Release 1 | Release 2 | Functional | Formalized | Scenarios

ACC | 33 27 13 30 21 24
B | 40 26 40 33 21 15
C |8 0 8 8 8 8

e In some cases, the scenario would have been too close
to the implementation: a scenario would mainly be a
copy of the C code, and a proof of the property would
be obvious. We did not formalize such scenarios.

i0s.

Checking Requirements. Table 2 gives an overview of
the ten implementation related errors we discovered. It fol-
lows an example of an implementation specific error (cor-
responding to rows 1 and 2 in Table 2). In ACC, time is
discretely represented by a counter variable. During a refac-
toring, a function for the calculation of time differences was
replaced (the C code for a fraction of this function is given
below). The new version contained an arithmetic overflow
of a variable. The result of this overflow is that a function
that encodes a safety monitor is not called during a time
window of 2.2 seconds every 30 seconds. As the function is
not called, all requirements that depend on the safety mon-
itor to be active are not satisfied. In this case the error can
clearly be considered an implementation error.

The newly created code for detecting the overflow did
contain a new error:

unsigned short x = ..., yv = ...;

if ((unsigned short) (x + y) < _USHORT_MAX)
{ ... } // no overflow

else
{ ... } // overflow

The else branch of the code is only executed
if (unsigned short) (x + y) equals exactly
_USHORT_MAX, which is obviously not sufficient, as the in-
tention of the else branch was to catch any overflow er-
rors. Correct code was later achieved by introducing casts
to larger datatypes.

The other errors (3-9) were of similar nature involv-
ing low-level technical implementation problems. Error 10
was caused by a requirement change (concerning interval
bounds) that was not reflected in the implementation.

We have found three cases in which testing revealed er-
rors that the scenario based formalization missed. The rea-
sons for this were:

e In one case, the formalization of the scenario was in-
correct.

e A requirement (concerning existence of a C function)
could not be formalized.

e An error in the verification backend masked a floating
point related error.

It is well known that the quality of verification ap-
proaches highly depends on the quality of the specifica-
tions. Our finding is that, even though the verification engi-
neer was not familiar with the requirements, the design, and
the implementation, few errors were missed. Moreover, we
found that testing and verification complemented each other
very well. Interaction between testers and the verification
engineer allowed to increase the quality of the implementa-
tion in a shorter time than with testing alone.

In addition to the implementation problems we detected
some inaccuracies in the requirements (requirements were
assigned to wrong components).

Runtimes. The runtimes for the model checker CBMC
were between 15 and 60 seconds for each of the 24 scenar-
ios for component ACC, and around the same order of mag-
nitude for components B and C. The SAT instances that are
generated within CBMC contained around 700.000 propo-
sitional variables and up to 400.000 clauses. This clearly
indicates that bounded model checking is a viable approach
in our setting.

4. Evaluation

Our results indicate that requirements management and
implementation quality can greatly benefit from introducing
software verification. The communication between testers,
developers and requirements managers can be facilitated us-
ing technical scenarios. The success of our method can be
seen from the number of new errors we found by our verifi-
cation approach. It is well known that requirements change
quickly during early development phases. Using scenarios,
the need for updating a large number of test cases could be
reduced to the update of less than 50 scenarios. Figure 1
illustrates the benefit of linking scenarios rather than test
cases with requirements.

The reason for better synchronization of requirements
and scenarios is that the number of scenarios is significantly
lower: A tester would introduce a potentially large num-
ber of test cases to achieve branch coverage for a function.
Verification automatically provides full coverage of all pro-
gram execution. Hence, its input is solely a description of

Table 2. Implementation errors found by software verification. The last column indicates whether

only one or multiple requirements are violated.

| [Component | Technical Reason | Requirement Violation Granularity |
1| ACC Possible overflow of a variable Multiple
2 | ACC Wrong overflow check Multiple
3 | ACC Missing functionality Single
4| B Conversion error of input message | Single
5|B Misuse of a macro definition Multiple
6| B Missing shift operation Multiple
7| B Overflow repair incorrect Single
8| B Incorrect order of read / write Multiple
9| B Incorrect encoding of bit-masks Multiple
10 | B Missed requirement change Single
4 Requirement + Branch Coverage)
Requirements- @ V@ Testcases
Artifacts (12)
@@ |
_ Linking requirements and testing @ |/|_!)
- KAbstraction
4 Requirement Coverage
Requirements- @ 31
Avrtifacts ®
S2
_ Linking requirements and scenarios ® @)

Figure 1. Linking requirements (R1 and R2) with a possibly high humber of test cases (T1-T4) poses
a significant synchronization and communication challenge for testers and requirements engineers.
Links between requirements and formal scenarios (S1 and S2) benefit from the fact that one scenario

encompasses a set of test cases.

input-output relations. Input-output relations, encoded in a
single scenario, cover a possibly exponential number of test
cases. Thus, less work for synchronization is required us-
ing our scenario-based verification approach. In addition to
the sheer improvement in link quantity, the construction of
scenarios can be driven by requirements coverage. Testing
has usually different coverage goals, e.g. MCDC (Modified
Condition Decision Coverage) test coverage for safety crit-
ical software. In order to obtain a coverage level, white box
tests have to be constructed, guided by the need to cover cer-
tain paths and conditions. The information which require-
ments are affected by the constructed testcase is derived af-
terwards. Thus, design of the test cases is not driven by
requirements and therefore maintainability is diminished.

The advantages of the method we propose manifested in

several aspects in our case study: Two requirements have
been identified to be assigned to the wrong component. The
formalization of scenarios has further contributed to find
missing requirements for one component.

A noticeable contribution of this work is to demonstrate
that software verification of functional properties can be ex-
ecuted concurrently to a normal development process. In
contrast to other case studies—which are either dealing with
generic properties like runtime-errors, or are executed of-
fline on a snapshot of a real system—our study features a
full functional analysis tightly integrated into the software
development process which can be iterated for every release
of requirements and implementation.

During our experiments we rarely observed that scenar-
ios have not been correctly formalized. Such a faulty for-

malization has at least lead to one missed error in the im-
plementation (that was detected by testing). Formal require-
ments analysis is a technique to identify such problems on
the level of requirements. In contrast to this technique, we
are working on scenarios that are derived later in the de-
velopment process. Even though scenarios can only be for-
mulated after deriving a concrete design and component re-
quirements, it may still help by allowing to check scenarios
for consistency. For a given set of k scenarios the following
formula is satisfiable if and only if the scenarios, all taken
together, are consistent: A, .., (pre; — ren(post;)).

The function ren(¢) renames all symbols 2 to new sym-
bols 2’ (not occurring in ¢) in ¢. Note that the effect of the
implementation is completely ignored here. We just check
whether the set of all pre- and post-conditions can be simul-
taneously satisfied. Hence, consistency of scenarios can be
checked by a SAT solver. The complexity is by far smaller
than checking whether a whole C implementation satisfies
one scenario.

4.1. Future directions

A potential direction of research that arose during our
experiments is the idea to use scenarios to derive test cases.
Then, verification could catalyze the communication be-
tween the component requirement world and testers.

A second direction of research is the integration of for-
mal requirement analysis into this scenario. Our scenarios
could be viewed as an implementation of the high-level for-
malizations. Automata-based formalizations, e.g. by Heit-
meyer et al. [11] seem close enough to be checked against
our C formalizations.

4.2. Limitations

Due to disclosure agreements we cannot give more in-
formation on the detailed outcome of the software tests. It
would be interesting to directly compare the number of er-
rors found using both methods. Efforts from developers
performing unit testing are currently not documented. In-
formation about the exact amount of time spent for testing
thus cannot not be given. The comparison would in any case
be less significant as the verification engineer stems from an
academic environment unfamiliar with the product and the
development processes.

This case study encompasses code from three compo-
nents with more than 3000 lines of source code. An ex-
tension to a whole product would certainly strengthen the
obtained results. As mentioned before, some of the require-
ments for component B could not be formalized due to the
fact that they were finalized only a couple of days before
our verification project ended. The engineer chose to verify
already formalized requirements instead.

4.3. Related Work

Three areas of research are related to our proposal: soft-
ware verification case studies, formal requirements analy-
sis, and work about linking testing and requirements.

It has been demonstrated in many case studies that nu-
merous verification techniques can be applied to real world
software. Well known examples include the Microsoft
SLAM project [17], which led to an interface specifica-
tion verification tool that is currently deployed with every
driver development kit. Cook et al. present the Termina-
tor [4] tool, which is able to check certain termination prop-
erties of windows device drivers. Other examples include
abstract interpretation tools, which are successfully applied
in avionics industry [6]. CBMC [3] has been successfully
applied to numerous complex software systems [12, 15].

Formal requirements analysis deals with formalizations
of requirements in an early design phase. Noticeable
demonstrations of this technique are given by Dutertre and
Stavridou [8] in the area of avionics using non-automatic
theorem provers. Crow and Di Vito [7] present a sum-
mary of four case studies in space craft industry using non-
automatic proof systems. An automata based approach that
is more closely related to the model checking technique we
presented was proposed by Heitmeyer et al. [11]. Miller et
al. have conducted a case study on using both the model
checker NuSMV and PVS for checking requirements of a
flight guidance system [14]. In contrast to our work, they
did not link the verification to a concrete implementation,
however. Also related to our work is that of Staats and
Heimdahl [18], where they use CBMC to prove correct-
ness of C code generated by automatic code generators like
Simulink.

Chechik and Gannon [2] presented a technique for au-
tomatically checking the consistency of requirements and
designs (expressed as state machines with event-driven tran-
sitions), which resembles our general approach. However,
they use light-weight verification techniques which use ab-
straction on data flow and are thus less precise than the non-
abstracting model checker CBMC that we use.

Uusitalo et al. analyze best practices for linking require-
ments and testing in industry [19]. Graham argues that
testers should be integrated into early development phases
[9]: Both sides can profit from a tight linking.

As a representative example of the many articles that are
dealing with applications of formal methods in an indus-
trial setting, we want to mention the report of Wassyng and
Lawford [20] that evaluates different tools for safety-critical
software development in the Canadian nuclear industry. An
article by Heitmeyer ef al. [10] on how to obtain certifiably
secure software systems is another typical representative,
more related to security properties.

5. Discussion

Formal scenarios provide a promising alternative for
maintaining links between implementation analysis and
component requirements. For parts of an industrial prod-
uct the technique has proven to be extremely efficient. An-
other advantage is that it can be applied concurrently with
testing. The effectiveness is substantiated by the detection
of ten implementation errors as well as improved adaptabil-
ity of quality assurance tasks to requirements changes. The
link between requirements and scenarios is still informal,
but due to the fact that the number of scenarios is orders of
magnitude smaller than the number of test cases, adaptabil-
ity is increased.

Testing and verification have proved to show a great syn-
ergy, which is reflected by the fact that both methods de-
tect unique errors: testing is still necessary on system level
whereas verification offers complete coverage on function
level. It is notable that verification could be integrated in
a development process. Even though verification was per-
formed by an external engineer, some results were obtained
earlier than through testing. One reason for this efficiency
is the higher manageability for scenarios linked to require-
ments.

Finally, we conclude that verification techniques like
bounded model checking have reached a stage of develop-
ment, where they can be employed with considerable bene-
fit in an industrial setting.

Acknowledgment. We would like to thank the reviewers
for their constructive comments that helped to improve this

paper.
References

[1] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg,
C. McGarvey, B. Ondrusek, S. K. Rajamani, and A. Ustuner.
Thorough static analysis of device drivers. In EuroSys Conf.,
Proc., pages 73-85. ACM Press, 2006.

[2] M. Chechik and J. D. Gannon. Automatic analysis of con-
sistency between requirements and designs. [EEE Trans.
Software Eng., 27(7):651-672, 2001.

[3] E. Clarke, D. Kroening, and F. Lerda. A tool for checking
ANSI-C programs. In K. Jensen and A. Podelski, editors,
Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), volume 2988 of LNCS, pages 168—176.
Springer, 2004.

[4] B. Cook, A. Podelski, and A. Rybalchenko. Terminator:
Beyond safety. In T. Ball and R. B. Jones, editors, CAV,
volume 4144 of LNCS, pages 415-418. Springer, 2006.

[5] P. Cousot. Abstract interpretation. ACM Comput. Surv.,
28(2):324-328, 1996.

[6] P. Cousot. Proving the absence of run-time errors in safety-
critical avionics code. In Proc. of the 7th ACM & IEEE Intl.

(7]

(8]

(9]

(10]

(1]

[12]

(13]

[14]

[15]

(16]

(17]

(18]

[19]

(20]

Conf. on Embedded software (EMSOFT), pages 7-9, New
York, NY, USA, 2007. ACM.

J. Crow and B. Di Vito. Formalizing space shuttle software
requirements: four case studies. ACM Trans. Softw. Eng.
Methodol., 7(3):296-332, 1998.

B. Dutertre and V. Stavridou. Formal requirements analysis
of an avionics control system. [EEE Transactions on Soft-
ware Engineering, 23:267-278, 1997.

D. Graham. Requirements and testing: seven missing-link
myths. Software, IEEE, 19(5):15-17, Sep/Oct 2002.

C. L. Heitmeyer, M. Archer, E. I. Leonard, and J. McLean.
Applying formal methods to a certifiably secure software
system. IEEE Trans. Software Eng., 34(1):82-98, 2008.

C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. Auto-
mated consistency checking of requirements specifications.
ACM Trans. Softw. Eng. Methodol., 5(3):231-261, 1996.
M. Kim, Y. Kim, and H. Kim. Unit testing of flash memory
device driver through a SAT-based model checker. In Int.
Conf. on Automated Software Engineering (ASE), Proc., (to
appear). IEEE Computer Society Press, September 2008.
D. R. Lindstrom. Five ways to destroy a development
project. IEEE Softw., 10(5):55-58, 1993.

S. P. Miller, A. C. Tribble, M. W. Whalen, and M. P. E.
Heimdahl. Proving the shalls: Early validation of require-
ments through formal methods. J. Software Tools for Tech-
nology Transfer (STTT), 8(4-5):303-319, 2006.

H. Post and W. Kiichlin. Integration of static analysis for
linux device driver verification. In J. Davies and J. Gibbons,
editors, Integrated Formal Methods (IFM), 6th Intl. Conf.,
Proc., volume 4591 of LNCS, pages 518-537. Springer-
Verlag, 2007.

J. Rysert and M. Glinz. A scenario-based approach to vali-
dating and testing software systems using statecharts. In In
12th International Conference on Software and Systems En-
gineering and their Applications (ICSSEA99, page 7, 1999.
Microsoft Research. The SLAM Project.
http://research.microsoft.com/slam, 2006.

M. Staats and M. P. E. Heimdahl. Partial translation ver-
ification for untrusted code-generators. In /0th Intl. Conf.
on Formal Engineering MethodsFormal (ICFEM’08), pages
226-237, Kitakyushu-City, Japan, Oct. 2008.

E. J. Uusitalo, M. Komssi, M. Kauppinen, and A. M. Davis.
Linking requirements and testing in practice. In RE ’08:
Proceedings of the 2008 16th IEEE International Require-
ments Engineering Conference, pages 265-270, Washing-
ton, DC, USA, 2008. IEEE Computer Society.

A. Wassyng and M. Lawford. Software tools for safety-
critical software development. STTT, 8(4-5):337-354, 2006.

