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Abstract

Bounded model checking—as well as symbolic equiv-
alence checking—are highly successful techniques in the
hardware domain. Recently, bit-vector bounded model
checkers like CBMC have been developed that are able to
check properties of (mostly low-level) software written in
C. However, using these tools to check equivalence of soft-
ware implementations has rarely been pursued. In this case
study we tackle the problem of proving the functional equiv-
alence of two implementations of the AES crypto-algorithm
using automatic bounded model checking techniques. Cryp-
tographic algorithms heavily rely on bit-level operations,
which makes them particularly suitable for bit-precise tools
like CBMC. Other software verification tools based on ab-
straction refinement or static analysis seem to be less ap-
propriate for such software. We could semi-automatically
prove equivalence of the first three rounds of the AES en-
cryption routines. Moreover, by conducting a manually as-
sisted inductive proof, we could show equivalence of the full
AES encryption process.

1 Introduction

Increasing the reliability of software can be done in dif-
ferent ways, e.g. by elaborate testing methods. If an
even higher level of confidence is required, verification ap-
proaches are employed. Over the last years, considerable
progress has been made in transferring fully automatic ver-
ification techniques from academic research to industrial
practice. Promising techniques for verification include ab-
stract interpretation, model checking in combination with
abstraction refinement, and bounded model checking.

Abstraction based software verification approaches as-
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sume that significant performance gains can be achieved
by “simplifying” the program under test such that it repre-
sents only aspects required for the verification task at hand.
This idea has been reported to work well for many control-
command oriented software systems, e.g. device drivers
[1, 21]. The applicability of this approach, however, is de-
pendent on the ability to find aspects that can be safely ab-
stracted.

Whereas for high-level software abstraction seems to
be a natural choice, low-level software often sacrifices ab-
stractable concepts in favor of efficient implementations.
Examples for these tradeoffs can be found among embed-
ded device software that is often still implemented in C.
Software implementations of ciphers, like the Advanced
Encryption Standard (AES) [9], fall into this category, too.
The AES standard is a symmetric block cipher using the
formerly named Rijndael algorithm. In order to provide ef-
ficient algorithms for block encryption, AES relies on bit-
sensitive hardware operations for encryption and decryp-
tion. To provide a high level of security, every bit of the
ciphertext must be dependent on every bit of the original
text and every bit of the key. Both characteristics imply that
data-slicing as well as data-abstraction do not perform well.

In such cases, where abstraction and high-level state
space pruning may fail, bit-sensitive techniques provide a
good alternative. One example for such a technique is
Bounded Model Checking which has been adapted to work
directly on software implementations. The usual problem is
that bit-sensitive verification approaches are expected not to
scale well, especially in the presence of unbounded loops.
State-space explosion is a commonly cited reason that pro-
hibits the sound and complete verification of real world soft-
ware systems.

This work addresses the question whether and how a
software bounded model checking tool like CBMC [6] can
be used to verify equivalence of two implementations of
the AES standard. Even though the above software im-
plementations provide a substantial challenge to verifica-
tion methods, we were able to obtain equivalence proofs for



two of three parts of the algorithm. Solved as well as un-
solved instances are available for download from our web-
site1. In the following we describe how such results can be
achieved (Section 3). In Section 4 results are presented and
discussed. Section 5 expands the discussion towards gen-
eral challenges that software verification approaches face
in practice. Lessons learned are also given in this section.
It should be noted that the decision procedure, i.e. soft-
ware bounded model checking as implemented by CBMC,
is completely automatic. Nevertheless, the decomposition
of the verification task and specification of data mappings
and proof obligations must be generated manually.

2 Tools and AES Implementations

Software Bounded Model Checking is one technique for
verifying safety properties of finite state software systems.
The approach as well as the implementation is reviewed in
the next section. Additionally the application domain, AES,
will be introduced to explain the common structure among
both implementations.

2.1 Software Bounded Model Checking
with CBMC

CBMC [6] is a bounded software model checking tool
for ANSI-C programs. Its implementation works similar
to bounded model checking tools for hardware verification.
All memory locations that may be addressed in a C program
of bounded length are modelled by finite bit-vectors. The
bound gives a maximum number of loop iterations and re-
cursion unwindings that may occur on each unwound path.
Recursion and loops are inlined such that the overall bound
is not violated. The resulting program has a finite number of
statements and therefore the number of possibly addressed
memory locations is also finite. All operations are translated
into bit-vector transitions. The well-known single static as-
signment form (see e.g. [8])enables the creation of state-
less bit-vector formulas which are further simplified to pure
boolean formulas in CNF. A boolean satisfiability decision
procedure then decides whether safety properties hold for
all possible finite length executions. For all experiments in
this paper CBMC is only used to generate CNF formulas.
The formulas are then solved using Minisat2 [12].

CBMC has built-in checks for several common runtime
errors. However, custom properties can be specified in the
C program using assert statements. assume statements
enable custom restrictions on the program state.

In order to check equivalence of two C functions that
are side-effect free both functions are called in a wrapper

1http://www-sr.informatik.uni-tuebingen.de/˜post/
aes/index.html

// first implementation
function int A(int input)
{ ... }
// second implementation
function int B(int input)
{ ... }

void miter() {
// miter function that checks for equivalence

int input_A = nondet_int();
int input_B = nondet_int();

// inputs must be equal
assume(input_A == input_B);

// execute functions sequentially
int result_A = A (input_A);
int result_B = B (input_B);

// verification obligation
assert(result_A == result_B);

}

Figure 1. Checking functional equivalence
with CBMC is straight-forward iff functions
are side-effect free and the decision proce-
dure handles the state-explosion.

program. Prior to the execution of the functions, input pa-
rameters are defined to be arbitrary (non-deterministic), but
equal. After execution of both functions, explicit or implicit
outputs are checked for equivalence using the assert di-
rective.

Figure 1 shows a typical example for a wrapper pro-
gram implementing the equivalence condition. Note that
functions of different implementations must use different
namespaces when checked for equivalence.

2.2 AES

The AES standard, formally named Rijndael algorithm,
is a symmetric block cipher with variable block and key
length. Block cipher refers to the fact that a text is encrypted
using a small block with constant size at a time. In standard
encryption mode each processing of a block is independent
of the encryption or decryption of other blocks. The size of
the blocks is predefined to be 128,192, or 256 bits. The key
is defined to hold 128, 192, or 256 bits. In the following
experiments key and text block sizes are limited to 128 bits.

The AES implementations differ greatly from control-
command driven program code as device driver implemen-
tations:

1. AES follows a strict execution order, i.e. for given
bit-sizes the exact execution trace can be determined
at compile-time. CBMC detects sound unwinding
bounds automatically. The amount of used stack mem-
ory is consequently also bounded. Heap allocation is
not used.
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Figure 2. AES is a round-based encryption
cipher. Encryption and decryption are iter-
ated n = 10..14 times. Each round contains 4
phases which are executed in reverse order
for decryption.

2. AES relies on hardware supported bit-vector opera-
tions like XOR and SHIFT.

3. Large quantities of constant tables are used.

4. Cipher-texts are substituted in a non-linear way .

5. All bits occurring in the cipher and plain text are in-
volved in the encryption and decryption process. Thus
they cannot be sliced away in the verification equations
(Diffusion phases MixColumn and ShiftRows).

AES is a round based algorithm using 10,12, or 14 iter-
ative rounds. The ciphertext output from the last round is
taken as an input for the following round. The key is ex-
panded and distributed such that for each round a distinct
round key is generated. A schema of the AES flow is given
in Figure 2.

Implementations of AES have to provide implementa-
tions for key expansion, encryption and decryption.

2.2.1 Reference Implementation (RI)

Barreto and Rijmen created a reference implementation that
is available for download2. The following functions provide
implementations for the three basic phases:

• int rijndaelKeySched (word8 k[][], int
keyBits, int blockBits, word8 rk[][][])

• int rijndaelEncrypt (word8 a[][], int
keyBits, int blockBits, word8 rk[][][])

• int rijndaelDecrypt (word8 a[][], int
keyBits, int blockBits, word8 rk[][][])

2http://www.iaik.tugraz.at/Research/krypto/AES/old/˜rijmen/rijndael
/rijndaelref.zip

Table 1. AES phases are implemented by the
following functions and data-structures.

AES Reference Implementation Mike Scott’s Impl.
S-Box S fbsub

Inverse S-Box Si rbsub
Key expansion rijndaelKeySched gkey

Encryption rijndaelEncrypt encrypt
Decryption rijndaelDecrypt decrypt

k denotes the original key whereas rk denotes the expanded
version of the key, i.e. an array of keys for the respective
rounds (round keys). The bit-parameter denote the number
of bits used for each block respectively for the key, i.e. 128
for our experiments. The formal parameter a refers to the
plaintext or ciphertext.

2.2.2 Mike Scott’s Implementation (MSI)

Though several C implementations exist, we have chosen
the one by Mike Scott3. The implementation is written in
ANSI-C without any fractions of inline assembly code. The
structure of the implementation is roughly similar to the ref-
erence implementation.

MSI provides the following function interfaces:
• void gentables(void)

• void gkey(int nb,int nk,char *key)

• void encrypt(char *buff)

• void decrypt(char *buff)

gentables performs several precomputations that must
be executed prior to the encryption, decryption and key-
generation. gkey implements the key-expansion. Table 1
relates AES phases with function names of both implemen-
tations.

3 Preparations

Checking the equivalence of two implementations re-
quires mapping inputs from one implementation to the
other, as, e.g., data formats may be different. In general,
we also need a way to check that the outputs of the two im-
plementations are the same for equivalent inputs. However,
in our case, the outputs of both algorithm are bit-wise equal,
so no mapping is required here.

Another challenge is the following: although CBMC can
handle almost all aspects of the C language, it has some
problems with special constructs like complex type conver-
sions. These also have to be dealt with in a manual pre-
processing step in order to use CBMC. More specifically,
we had to add code transformations to some functions that
pass parameters by reference:

3Available under: ftp://ftp.compapp.dcu.ie/pub/crypto/rijndael.c
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• Formal reference parameters are refactored such
that global variables are used directly, e.g., the
function encrypt(char* buff) becomes
encrypt(void) and all references to *buff are
preplaced by referencing the global buffer variable.
For the given implementations this transformation can
easily be applied as the formal reference parameters
always refer to the same object (singleton).

• Reference parameters to subarrays of multidimen-
sional arrays are preplaced by a reference to the par-
ent array. Moreover, an additional index parameter is
added to the function’s parameter list that allows to
compute the correct address using index operations.

The above changes affect slightly more than 50 lines of
code in the RI. However, each individual change is trivial.
The correctness of these changes is confirmed by runtime-
testing and by typechecking of a compiler.

3.1 Synchronizing Inputs

RI and MSI use many common constant tables and ma-
trices. One example is the S-box that provides one source of
non-linearity in the algorithm. In cases where the AES stan-
dard defines values of constants we merge tables and arrays
from both implementations. Additionally, the computation
of the look-up tables in MSI can be removed. Note that this
computation of, e.g., discrete logarithm constants, is deter-
ministic, so the correctness of the removal of gentables
can be easily verified by one execution of both algorithms.
The definitions that are used in the following experiments
stem from the RI. Instead of renaming references to tables
in the MSI code, preprocessor macros are used to redirect
read accesses to RI tables and arrays. One example is the
macro #define fbsub S. fbsub is the MSI array that
encodes the S-box constants. The macro implies that any
access of the form fbsub[i] is transformed to S[i]. The
information which arrays correspond to each other has to be
extracted from the program structure and the AES standard.

Encryption, decryption and key-expansion operate on
two parameters: the key and the text buffer. In the RI two-
dimensional arrays are used to store the 128 bit blocks. MSI
uses one-dimensional arrays of 8 bit cells for the text and of
32 bit cells for the round keys. The possible number of dif-
ferent mappings between the encodings of the round keys
is large, but code inspection and parallel execution of MSI
and RI allowed to find the correct mapping after a few tries.

The mapping of different input encodings is given in Fig-
ure 3. For the purpose of ensuring that both implementa-
tion get similar inputs the mapping had to be encoded in C.
As presented in the initial example, assume statements are
used to express equality of memory cells. The full encod-
ing of the mapping is given in Figure 4. The embedding of

Figure 3. RI and MSI use different memory
layouts for the encoding of key and texts.
In order to synchronize inputs the mappings
had to be reengineered and expressed via
assume statements (cf. Subsection 3.1).

a)

for (i = 0; i != 4; i++) {
for (j = 0; j != 4; j++) {
key[i][j] = nondet_char();

// initialize the RI text buffer
text[i][j] = nondet_char();

// initialize the MSI text buffer
text_ms[j*4+i] = text[i][j];

}
}

b)

BYTE tmp[4]; WORD res;
for (r = 0; r != 11; r++) {
for (j = 0; j != 4; j++) {

for (i = 0; i != 4; i++) {
tmp[i] = rk[r][i][j];

}
res = pack(tmp);

// initialize MSI forward key fields
(*) fkey[r*4+j]=res;

}
}

Figure 4. a) Inputs, i.e. key and text buffers,
have to be synchronized. b) Decryption and
encryption additionally require the synchro-
nization of rounds keys. The function pack
encodes 4 bytes into one 32 bit word. rk and
fkey denote the round keys used by RI, re-
spectively MSI.

the synchronization for encryption and decryption analysis
is shown in Figure 5 b).
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4 Verification Results

This section contains details of all performed experi-
ments. The general setup of the different experiment stages
are illustrated in Figure 5. Runtimes and information about
generated queries for the SAT-solver are presented in Ta-
ble 2.

In the following equivalence checks for all three parts of
AES are discussed separately.

4.1 Key Generation

The layout of the equivalence check for key generation
is depicted in Figure a). Note that equivalence checking
on the key generation requires a mapping between differ-
ent bits of the encoded round key array, i.e. the output of
the key expansion. The mapping is depicted in Figure 3.
After providing the mapping the verification was straight-
forward: The only variable input is the key itself which is
non-deterministically initialized and passed to both func-
tions.

The proof obligation is that the generated round keys are
equal. With CBMC such a condition can be expressed sim-
ilar to Figure 4 b), where the (*) line is transformed to
express a proof obligation instead of a synchronizing as-
signment:

(*) assert(fkey[r*4+j]==res);

Both decryption and encryption require round keys as
well as a text of 128 bits as input. We have shown the round
key generation to be equivalent. Therefore, round keys gen-
erated by RI can be used as input for both implementations
.

4.2 Encryption

The system layout for the equivalence checks for the en-
cryption routines is shown in Figure b) and c). The com-
plexity of the verification task is increased incrementally:
At first (EN1r) we execute a normal key generation fol-
lowed by one round of encryption for both algorithms. Af-
terwards we checked the outputs to be equal. Then, the
number of rounds is iteratively increased to up to 4 until
a timeout is produced (EN2r,EN3r and EN4r).

For the 128 bit sizes, AES defines that ten rounds have
to be performed. Inlining encryption steps ten times re-
sulted in a SAT instance that could not be solved within
twelve hours. In order to obtain sound verification results
for encryption, an inductive schema was used: The base
case consists in the proof that both algorithms always get
equal inputs, i.e. round keys (KEY). The inductive step en-
codes the fact that if both algorithms are equal up to the i-th
round, then, they produce equal results after round i+1. The

proof of the inductive step (ENloop) has a smaller runtime
than a two round encryption (EN2r). One round encryption
(EN1r) has a significantly smaller runtime than the induc-
tive step because AES defines the first round to require less
phases than any other round.

ENzz2r encodes a two-round encryption with determin-
istic (zero filled) text and key bits. Hence, the proof of
equivalence does not involve any (relevant) arbitrary vari-
ables. So, ENzz2r roughly estimates the amount of time
used for constant propagation and two-round equivalence
checking. It is notable that the runtime of ENzz2r is more
than 20 times smaller than the runtime of EN2r. This result
indicates that the runtime is indeed dominated by solving
the encryption equations and not by plain constant propa-
gation of the zero filled input blocks. It is also notable that
using concrete key and text bits a result for ten-round en-
cryption could be achieved (ENzz10r).

4.3 Decryption

All decryption experiments follow the same layout as the
corresponding encryption ones (cf. Figure b) and c)).

The structure of the AES cipher is symmetric. One
would thus expect that repeating the above experiments for
the decryption phase would yield similar results. In contrast
to this expectation decryption equivalence checking did in-
volve harder problems (cf. Table 2).

It is significant that all decryption instances show much
larger sizes than their corresponding encryption counter-
parts. Why these instances provide harder benchmark is
subject to speculation. However, we suggest the following
explanations:

• MSI uses a different order in which decryption is per-
formed. This results in a loss of structural similari-
ties in the verification equations , which decreases the
amount of reusable component encodings.

• MSI generates optimized backward round keys rkey
from forward round keys. Synchronizing inputs for
MSI therefore also requires the construction of the
MSI-forward keys. Reverse keys are then generated
using MSI-code. The extra lines of code add several
additional loops and many new bitfields to the pro-
gram. As software bounded model checking uses un-
winding and single static assignment forms, the differ-
ences could be exponentially enlarged.

DE1r is a proof of concept that at least one round de-
cryption can be proved equivalent. DE2r and DE3r SAT in-
stances could be generated. Both confirm a blowup in their
problem sizes as well as CBMC generation times. A two-
round decryption run with concrete key and text bits could
also be completed.
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Figure 5. Components of the equivalence proofs.

As the RI and the MSI show significant differences in
their decryption loop implementation a formal induction
proof could not be performed. The overall high runtimes
hamper attempts to correctly establish inductive proofs.
DEloop shows runtimes and problem sizes for an incorrect
induction step, i.e. the claim does not hold. Runtimes for a
correct invariant are probably much higher.

Table 3 provides statistics about the amount of source
code and source code changes that were involved in the ex-
periments. In the following the runtimes and problem sizes
are discussed.

4.4 Runtimes and Problem Sizes

The runtimes of CBMC and Minisat2 are listed in the
first columns of Table 2. Encryption related experiments
are denoted by the prefix EN. Decryption experiments have
the prefix DE.

EN vs. DE runtimes. Decryption checking runtimes are
much higher than encryption checking runtimes. One
possible explanation on program level is that for de-
cryption forward and reverse keys must be computed.
The later are computed from the forward keys which
are only needed for the encryption. Especially for a
small number of rounds the overhead of computing
twice as many keys might explain a difference in run-
times. The increase in runtimes matches the increase
in variables and clauses needed to encode the problem
in CNF.

EN1 vs. EN2, EN3, EN4 runtimes. The relative increase

between EN1 and EN2 is much higher than for other
experiments. This discrepancy is caused by the fact
that AES requires the first encryption and the last de-
cryption round to consist of only the addition of the
round keys. Normal rounds include 4 computationally
intensive steps instead of one. This effect is also vis-
ible in the differences between EN and DE runtimes
because DE1r,DE2r and DE3r do not include the re-
duced last round whereas EN1r,EN2r and EN3r profit
from this irregularity.

ENzz vs. EN runtimes. As expected, zero-initialized text
and key buffers lead to a significant runtime improve-
ment compared to equivalence checks for arbitrary, but
equal keys for both implementations. The high runtime
of ENzz10r is caused by the high number of variables
and clauses: Minisat2 needs to propagate the initial in-
put to output variables.

CBMC emitts the number of program assignments and
sliced program assignments as additional information. For
the sake of completeness they are also shown in Table 2.

The last columns contain the number of variables and
clauses taken from the DIMACS CNF encoding that is the
input to Minisat2. It is not surprising but notable that the
largest solveable instance, ENzz10r, is solved quite fast
even though it involves more than 2 million variables. This
is due to the fact that it does not contain any relevant free
variables as text and key bits are determined.
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Table 2. Statistics of different experiments (using Minisat2 as SAT-Solver). (S) denotes a satisfiable
instance, all others are unsatisfiable. (TO) refers to a timeout (more than 12h). Instances that have
a zz postfix were generated using a zero filled key and text array. Some instances were manually
sliced (**).

CBMC[s] SAT[s] Assignm. Sliced Variables Clauses
KEY 25.44 76.40 13,958 5,641 79,145 475,049
EN1r 21.20 2.60 15,577 9,489 34,665 221,485
EN2r 37.22 1,313.45 16,471 7,472 267,541 1,573,693
EN3r 51.68 3,274.87 17,365 7,756 500,385 2,925,901
EN4r 69.59 (TO) 18,259 8,040 733,229 4,278,109

ENloop 344.63 21.47 10,502 4,654 276,374 1,598,822
ENzz2r 37.27 5.99 16,488 7,521 253,125 1,486,261
ENzz10r 166.95 954.36 23,740 9,831 2,116,005 12,303,925

DE1r 20.15 1.92 15,645 9,515 34,658 220,870
DE2r(**) 69.07 (TO) 10,659 4,035 886,030 4,821,654
DE3r(**) 172.49 (TO) 20,131 8,152 1,737,370 9,422,438

DEloop(S) 1,446.81 2,868.36 26,632 8,953 4,244,263 22,604,459
DEzz2r 85.86 15.14 17,905 7,730 883,094 4,805,802
DEzz10r 1,679.54 (TO) 35,849 11,498 7,693,814 41,612,074

5 Experiences

In the last section raw results were presented. This sec-
tion concentrates on the insights gained while performing
the case study. A brief proposal for the integration of the
technique into industrial development processes is given in
Subsection 5.3.

Two high-level lessons could be learned: At first, we
faced problems finding correct mappings between different
structures of the two implementations, Moreover the veri-
fication of the decryption failed due to the fact that an in-
variant or mapping could not be found. A resulting con-
sequence is that we propose that verification must be per-
formed in cooperation with the software developers. This
experience is also brought forward in [11]. Secondly, state
space explosion is a still a major obstacle for functional
equivalence checking. Nevertheless even data-sensitive ver-
ification tasks with non-linear operations can be established
using state-of-the-art SAT-solving tools.

5.1 Preparation - Verification Cycles

The first stage of any software verification project is the
program preparation and the specification task description.
Program prepration could mean that the program needs to
be syntactically transformed, manually sliced, abstracted or
prepared for manual induction. Each of these tasks is error-
prone for several reasons: The most obvious one is that the
internal workings of the software are not evident for the ver-
ification practitioner who is not the developer. Another rea-
son is that manual abstraction or transformations must en-
sure that the truth of the verification property is not changed.

Table 3. Indication of program and modifica-
tion statistics. (*) The RI includes two files
that contain numerical constants.

Characteristics Sizes
MSI LOC 386
RI LOC (*) 381 + 85 + 64
Decrypt Miter LOC 63
Encrypt Miter LOC 64
Keygeneration Miter LOC 32
Macros to map MSI to RI tables 5

This means that the verification practitioner needs to under-
stand prior to the verification task why certain properties
hold—respectively why certain aspects are irrelevant to the
property.

So in practice software verification is not a one-pass pro-
cess of specification or preparation followed by a single in-
vocation of the verification engine. A better model is an it-
erative process that involves reengineering of specifications,
transformations and the program until no evident errors oc-
cur. Each iteration involves an invocation of the backend.
Thus, the overall performance of the cycle is much more
time-consuming than the runtime given for a single verifi-
cation run.

Iterative processes require a termination condition:
When should the iterative refinement of program and spec-
ification stop? Above we defined that the termination con-
dition is fulfilled when no obvious errors in transformations
and specifications occur. A better solution requires proof
explanations which will be discussed in the following sub-
section.
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5.2 Proof Explanation

CBMC generates SAT-instances which are solved by a
SAT-solver. If the instance is satisfiable a model is gen-
erated and CBMC constructs a concrete trace in the pro-
gram from the model. Hence, for satisfiable properties,i.e.
instances where the property does not hold, the verication
practitioner may check if the trace forms a real program er-
ror. Another outcome is that the specification or some pro-
gram transformations could be wrong—i.e. a false positive
bug report.

What if CBMC reports that a property holds? If a SAT-
solver supports proof generation (which Minisat2 does not
support at the moment) this proof could theoretically pro-
vide an explanation for the correctness of the formula. Of
course, the bit-level proof also represents a proof in the pro-
gram semantics. However, it seems completely impossible
to understand a SAT-proof for a formula with a few million
variables. It remains an open problem how a better expla-
nation can be generated. Otherwise, all correctness proofs
remain subject to possible specification, program transfor-
mation or verification engine implementation errors.

A more formal representation of a verification task is
given by

P ∧ T |= S

P represents the set of statements that the program defines.
S denotes the specifications whereas T denotes performed
program transformations (e.g. the mapping of input pa-
rameters in equivalence checking). No matter whether the
above statement holds, the result is always dependent on the
correct formulation of S and T . A proof explanation seems
the only way to ensure that both S and T are indeed as in-
tended. Notably the current state of the art technique for
increasing confidence in specifications and transformations
is fault injection and—to a limited extent—testing.

5.3 Industrial Integration

The results obtained in the experiments show that source
code bounded model checking is a powerful tool for system-
atically analyzing and comparing computationally intensive
functions. Nevertheless, the provided data resembles an
upper bound of the current performance of this technique.
Given these bounds and the insight that equivalence check-
ing greatly depends on structural similarity, we derive one
domain where source code bounded model checking might
be used successfully: regression proofs for low-level func-
tions that have been changed with respect to coding styles
or optimizations.

MISRA-C [20] is such a coding standard that is widely
required for embedded software development in the auto-
motive domain. MISRA-C provides a set of rules that re-
strict the use of C language constructs. At one of the later

stages in the development process, a compliance analysis is
performed. If functions or lines of code violate MISRA-
C rules the code must be changed. As the functions were
already tested on unit and system level it is desireable to
automatically prove that the changes did not introduce new
flaws in the program. Otherwise some of the unit and sys-
tem tests would have to be rerun.

In cooperation with the automotive supplier Robert
Bosch GmbH, Germany, we tested whether software model
checking is capable to prove functional equivalence on the
level of C functions. Initial experiments indicate that inte-
gration of this technique works well in industrial practice.
In cases where the function was unintentionally changed
with respect to its functional behavior, CBMC detected the
flaw within seconds without having to specify test cases.

5.4 Related work

Matsumoto et al. [18] present an equivalence checking
method for C descriptions. One of the cases they consider
is an AES implementation. Their cases as well as the em-
ployed methods differ greatly from this case study. Instead
of checking two entirely different implementations, the au-
thors insert a small number of textual changes in the C de-
scription. For the AES implementation the only change
employed is the replacement of 4-XOR operations by 2-
XOR operations. Equivalence checking is then performed
by symbolic execution focussed on equivalence class ab-
straction. The application of the proposed method is limited
as input descriptions must have an isomorphic control-flow
graph.

Using SAT solvers to tackle cryptographic problems is
an active area of research. Massacci and Marraro analyzed
the Data Encryption Standard by manually encoding the al-
gorithm in propositional logic [17]. They were able to break
the encryption and find the encryption key for up to three
encryption rounds, but not for the complete DES. Com-
pared to our work, their approach requires a manual (and
potentially error-prone) encoding of the crypto algorithm,
whereas our method works directly on the C implementa-
tion. Further work on using SAT solvers for cryptography
includes the analysis of hash functions [19, 10]

Clarke and Kroening [5] briefly state that equivalence
for a C and VHDL implementation of the DES crypto al-
gorithm can be proved using CBMC. However, the authors
provide very few details on the performed experiment. A
notable difference is that DES is by far less complex than
AES. Additionally it is unclear how the VHDL and C im-
plementation relate to each other—if the VHDL code is a
direct implementation of DES that has been derived from
the C program this could have eased the proof significantly.

Kim et al. [14] present a recent case study where CBMC
is used to unit test functional requirements of a flash mem-
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ory device driver.
Many software model checking case studies deal with

abstract interface specifications. Ball et al. [1] perform a
case study on windows device drivers searching for vio-
lations of finite state interface protocols. The properties
checked are limited to function call triggered state transi-
tions. Post and Küchlin [21] present a similar case study
using bounded model checking for Linux device drivers.
MOPS is another light-weight model checking tool that has
checked several higher-level specifications in Linux soft-
ware [4].

The above three case studies deal to a large amount with
control-command oriented program code which is typical
for the functions performed by device drivers. AES func-
tional consistency checking shows inverse statistics. The
code base is smaller but the amount of lines of code and
percentage of bits that are relevant to the verification prop-
erty is much higher.

A recent trend in software verification is the applica-
tion of multiple abstraction techniques: Abstract interpre-
tation [7] static analysis tools are known to provide insights
on programs using various abstractions on variable and op-
eration domains. A recent case study on Avionics software
is presented by Delmas and Souyris [11]. Other techniques
apply hard-coded abstractions (e.g. summaries) to reduce
the complexity that arises when checking complex software
systems (cf. Engler and Ashcraft [13]). One seminal result
is that (predicate) abstraction can also be computed and re-
fined in a lazy manner. The latter approach is named counter
example guided abstraction refinement and is for example
implemented in software verification tools like MAGIC [3].
Bryant et. al recently proposed abstraction based decision
procedures for bit-vector arithmetic [2].

Our technique may also profit from techniques like SAT
Sweeping [15] or proof reuse [16] to achieve better perfor-
mance.

6 Summary

The overall contribution of this work is the demonstra-
tion that functional equivalence checking of real-world soft-
ware is feasible using standard academic software bounded
model checking tools. Most of the verification work is done
automatically and does not require user-interaction. How-
ever, manual preparation is still needed to a certain degree.
Most notable in our case is the semi-automatic induction we
had to perform to decompose the problem into manageable
parts. Using novel invariant generation methods—as pre-
sented in [?] or in [?]—a fully automatic verification of this
inductive part might become possible in the near future.

In addition, our work provides benchmark instances to
support the development and testing of future verification
engines on the basis of real world applications.

We would like to thank Alexander Kaiser and Thomas
Gorges for supporting the industrial integration.
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