
24158Computational ComplexityIntrodutionOlga TveretinaUniversity of Karlsruhe/KITolga�ira.uka.de21.10.2009
Olga Tveretina 24158 Computational Complexity

Textbooks
(1) Sanjeev Aurora and Boaz Barak. Complexity Theory: AModern Approah.http://www.s.prineton.edu/theory/omplexity(2) Mihael Sipser. Introdution to the Theory of Computaion.(3) Oded Goldreih. Computational Complexity: A ConeptualPerspetive.http://www.wisdom.weizmann.a.il/∼oded/-book.html

Olga Tveretina 24158 Computational Complexity

Computational omplexity
◮ Fouses on lassifying omputational problems aording totheir inherent di�ulty.
◮ A problem is regarded as inherently di�ult if solving theproblem requires a large amount of resoures, independentof the used algorithm.
◮ Considers mathematial models of omputation and theamount of resoures needed to solve them, suh as time andstorage.

Olga Tveretina 24158 Computational Complexity

Closely related �elds
◮ Analysis of algorithms: To determine the amount ofresoures (suh as time and storage) neessary to exeutethem.
◮ Computability theory: For whih deision problems doalgorithms exist.
◮ Computational omplexity theory: For whih deisionproblems do e�ient algorithms exist.This raises the questions:
◮ What `resoures' do we wish to be employed `e�iently'
◮ What do we mean by `e�ient'?Olga Tveretina 24158 Computational Complexity

Computational problems
◮ Multipliation: Given two integer numbers a and b,ompute their produt a · b.
◮ Dinner party problem: Given a list of aquaintanes and alist of ontaining all pairs of individuals who are not onspeaking terms with eah other, �nd the largest set ofaquaintanes you an invite to a dinner party suh thatyou do not invite any two who are not on speaking terms.

Olga Tveretina 24158 Computational Complexity

E�ieny of multipliation
◮ Repeated addition: add a to itself b − 1 times.
◮ Grade-shool algorithm: 12

23
36

24
276Hene, for multiplying two n-digit numbers:

◮ The repeated addition uses n · 10n−1 additions.
◮ Thee grade-shool algorithm uses 2n2 additions.
◮ The fastest known algorithm the Fast Fourier Transformuses (c · n · ln n · ln lnn) operations.Olga Tveretina 24158 Computational Complexity

E�ieny of solving the dinner party problem
◮ Obvious ine�ient algorithm: Try all possible subsets fromthe largest to the smallest, and stop after a subset thatdoes not inlude any pair who do not get along.
◮ Running time for n people = the number of subsets = 2n.
◮ To organize a 70-person party, superomputers would spendthousands of years .
◮ Surprisingly: We still do not know signi�antly betteralgorithms!

Olga Tveretina 24158 Computational Complexity

Representing problem instanes
◮ When onsidering omputational problems, a probleminstane is a string over an alphabet.
◮ Integers an be represented in binary notation, graphs anbe enoded via their adjaeny matries.
◮ The independent of the hoie of enoding an be ahievedby ensuring that di�erent representations an betransformed into eah other e�iently.

Olga Tveretina 24158 Computational Complexity

Upper and lower bounds on the omplexity of problems
◮ Proving upper and lower bounds on the minimum amountof time required by the most e�ient algorithm solving theproblem.
◮ The running time of a partiular algorithm is measured as afuntion of the length |x| of the input x.

Olga Tveretina 24158 Computational Complexity

Interesting questions about omputational e�ieny
◮ Do some tasks inherently require exhaustive searh? (P vsNP)
◮ Can algorithms use randomness to speed up omputation?
◮ Can problems be solved quiker if only approximatesolutions are required?
◮ Can we use omputationally hard problems, to onstrut, foexample, ryptographi protools that are unbreakable?
◮ Can we use quantum mehanial properties to build fasteromputers?
◮ Can we generate mathematial proofs automatially?Olga Tveretina 24158 Computational Complexity

Olga Tveretina 24158 Computational Complexity

