
Entscheidungsverfahren
mit Anwendungen in der Softwareverifikation

X: Modulare Arithmetik

Carsten Sinz

Institut für Theoretische Informatik

14.01.2020

14.01.2020 C. Sinz (ITI/KIT): Entscheidungsverfahren in der Softwareverifikation

"Program Arithmetic"

2

unsigned int  
square_check(unsigned int x)
{
 unsigned int y = x * x;
 if (y == 33) { error(); }
 return y;  
}

Is error()
reachable?

Has

a solution?

x2 ≡ 33 mod 232

Yes!
4 Solutions, e.g. 663169809

14.01.2020 C. Sinz (ITI/KIT): Entscheidungsverfahren in der Softwareverifikation

Algebraic Properties

• ℤ: commutative ring with unity; integral domain (no zero divisors); Euclidian
domain (division with remainder)

• ℤ/2kℤ: also commutative ring with unity, but no integral domain (for k>1)

3

Property ℤ signed int

(if defined) unsigned int

Closure yes yes yes

Associativity

a+(b+c) =
(a+b)+c

yes yes yes

Commutativity

a+b = b+a yes yes yes

Ex. of identity

a+0 = a

yes yes yes

Ex. of inverse

a+(-a) = 0 yes yes no

Addition
Property ℤ signed int

(if defined) unsigned int

Closure yes yes yes

Associativity

a*(b*c) =
(a*b)*c

yes yes yes

Commutativity

a*b = b*a

yes yes yes

Ex. of identity

a*1 = a

yes yes yes

Ex. of inverse

a*(a-1) = 1 only 1 and -1 only 1 and -1 all odd

numbers

Multiplication

Mathematical Integers vs. Signed vs. Unsigned

14.01.2020 C. Sinz (ITI/KIT): Entscheidungsverfahren in der Softwareverifikation

Arithmetic in
• Definition:

• As usual, we identify with , where , thus

• Examples of arithmetic in :

• When has the equation a solution? Is it unique?

• Has the equation a solution in ? Is it unique?

• Basic facts:

• is solvable for the unknowns , iff the greatest

common divisor of divides .

• has a multiplicative inverse , iff .

• can be computed using the extended Euclidian algorithm or using

Euler’s theorem, . For , ,
and thus .

4

ℤ/2kℤ

ℤ/nℤ = {ān |a ∈ ℤ} with ā = {…, a − n, a, a + n, …}
ā a 0 ≤ a < n

ℤ/2kℤ = {0,…,2k − 1}
ℤ/2kℤ

x2 = 33 ℤ/28ℤ
a ⋅ x = b

a

∑n
i=1 aixi ≡ b (mod m)

b
xi

{a1, …, an, m}

mod m gcd(a, m) = 1
a−1

a−1 ≡ aϕ(m)−1 (mod m) m = 2k ϕ(m) = ϕ(2k) = 2k−1

a−1 ≡ a2k−1−1 (mod 2k)

14.01.2020 C. Sinz (ITI/KIT): Entscheidungsverfahren in der Softwareverifikation

Solving Equations in
• Given: Polynomial

• Goal: Solutions of

• First, consider the linear case: , i.e. solving the equation

modulo .

• If is invertible, then is the (unique) solution. (This is the case, if

is odd.)

• Otherwise, has solutions, iff . The solution is not unique,

but a particular solution is given by .

• Theorem: The congruence ax ≡ b (mod m) is soluble in integers if, and only if,

gcd(a, m) | b. The number of incongruent solutions modulo m is gcd(a, m).

• How can we find all solutions?

• For all solutions x, the following holds: . Having a first solution

x0, all solutions are given by for .

5

ℤ/2kℤ

p(x) ≡ 0 mod 2k

p(x)

x = b ⋅ a−1a a

p(x) = a ⋅ x − b a ⋅ x = b
m = 2k

a ⋅ x = b gcd(a,2k) |b
x = b/a

∃t . ax + tm = b
xk = x0 + k ⋅ (m / gcd(a, m)) 0 ≤ k < gcd(a, m)

14.01.2020 C. Sinz (ITI/KIT): Entscheidungsverfahren in der Softwareverifikation

Solving Systems of Linear Congruences
• Given a system of linear congruences (mod m = 2k) over n variables,

with  
 , 
 
find its solution set.

• Algorithm [Ganesh, 2007]:

• If there is an odd coefficient aji, solve equation Ej for xi and substitute xi in

all other equations. If Ej cannot be solved for xi, i.e. if ,
then there is no solution to S.

• If all coefficients aji are even, divide all aji, bj by two and decrease k by one.

• Repeat the algorithm with the resulting system of congruences and stop

with "success" if there is only one solved equation left.

• Properties:

• The algorithm is a sound and complete decision procedure for linear
congruences.

6

S = {Ej}

Ej :
n

∑
i=1

ajixi ≡ bj mod 2k

gcd{aj1, …, ajn, m} ∤ bj

14.01.2020 C. Sinz (ITI/KIT): Entscheidungsverfahren in der Softwareverifikation

Solving Systems of Linear Congruences
• Example: Solve the following system of congruences modulo 8: 
 
 
 
 
 

• Note:

• Ganesh considers the unknowns as bit-vectors of length k; when the

system is divided by 2, the highest bit in each bit-vector is dropped (i.e.
left unconstrained)

• Question:

• How can the set of all solutions of S be determined after the algorithm

finished?

7

3x + 4y + 2z = 0
2x + 2y = 6

4y + 2x + 2z = 0

14.01.2020 C. Sinz (ITI/KIT): Entscheidungsverfahren in der Softwareverifikation

Solving Non-Linear Congruences
• Task: Given a polynomial p(x), find all solutions of .

• Hensel lifting algorithm (special case for m = 2k):

1. [k=1] Check, whether has a solution. If not, exit with
"no solution".

2. [k k+1] Let {xi} be the set of solutions for . We
distinguish two cases to lift each xi from k to k+1:

A. If : [0 or 2 lifted solutions]

1. If , xi cannot be lifted

2. Otherwise there are two lifted solutions

B. If : [unique lifting] 
 

• Note: Hensel-lifting also works for multivariate polynomials. However, already
the base case (k=1) is NP-complete. (Why?)

8

p(x) ≡ 0 mod 2k

p(x) ≡ 0 mod 2

p(x) ≡ 0 mod 2k

p′ (xi) ≡ 0 mod 2

p(xi) ≢ 0 mod 2k+1

x*i = xi + t ⋅ 2k, t ∈ {0,1}

p′ (xi) ≢ 0 mod 2
x*i = xi − p(xi) mod 2k+1

14.01.2020 C. Sinz (ITI/KIT): Entscheidungsverfahren in der Softwareverifikation

Solving Non-Linear Congruences
• Example:

•

• [k=1, mod 2]: x2=1 mod 2 has solution x*=1

• [k=2, mod 4]: Try to lift x*=1: p'(x*)=0 mod 2, thus 0 or 2 lifted solutions 

p(x*)=0 mod 4, thus 2 liftings: x*'= x*+2t = {1, 3}

• [k=3, mod 8]:

• Lifting x*=1: 0 or 2 lifted solutions, p(x*)=0 mod 8, x*' = { 1, 5 }

• Lifting x*=3: 0 or 2 lifted solutions, p(x*)=0 mod 8, x*' = { 3, 7 }

• [k=4, mod 16]:
• Lifting x*=1: p(x*)=0 mod 16, x*' = { 1, 9 }

• Lifting x*=3: p(x*)=8 mod 16, no lifting

• Lifting x*=5: p(x*)=8 mod 16, no lifting

• Lifting x*=7: p(x*)=0 mod 16, x*' = { 7, 15 }

9

x2 ≡ 33 mod 24

p(x) = x2 − 33, p′ (x) = 2x

09.01.2019 C. Sinz (ITI/KIT): Entscheidungsverfahren in der Softwareverifikation

Hensel’s Lemma
• Theorem: Let f(x) be a polynomial with integer coefficients, k ≥ m > 0, r an

integer with . Then if , there is an integer s such
that and . So s is a „lifting“ of r to a root mod  
 . Moreover, s is unique mod .

• Proof: Consider the Taylor series expansion of f: 
 
 
Since m ≤ k, all terms but the first two vanish mod pk+m, so 
 
 
Setting , we can solve for t:

10

f′ (r) ≢ 0 mod p
f(s) ≡ 0 mod pk+m s ≡ r mod pk

pm+k pm+k

f(r + pkt) = f(r) + f′ (r)pkt +
f′ ′ (r)
2!

p2kt2 + …

f(r + pkt) = f(r) + f′ (r)pkt (mod pk+m)

f(r) + f′ (r)pkt ≡ 0 (mod pk+m)

pkt ≡ −
f(r)
f′ (r)

(mod pk+m)

t ≡ −

f(r)
pk

f′ (r)
(mod pm)

f(r + pkt) ≡ 0

f(r) ≡ 0 mod pk

09.01.2019 C. Sinz (ITI/KIT): Entscheidungsverfahren in der Softwareverifikation

Notes to Hensel’s Lemma
• is an integer by the lemma’s assumption .

• has a multiplicative inverse mod pm, as .

• The solution s unique mod pk+m is given by , where 
 .

• Case without a unique lifting (restricted to the case m=1 in the Lemma):

• Assume and . Then implies  
 by the Taylor expansion, i.e.  
for all integers t. We thus have two cases:

• : Then there is no lifting from k to k+1.

• : Then every lifting of r from k to k+1 is a root mod pk+1,
i.e. is a solution for each .

11

f(r)/pk

f′ (r) f′ (r) ≢ 0 mod p

f(r) ≡ 0 mod pk

s = r + pkt = r − f(r)/a

f(r) ≡ 0 mod pk

f(r) ≢ 0 mod pk+1

a ≡ f′ (r)−1 (mod pm)

f(r) ≡ f(s) mod pk+1
s ≡ r mod pk

f(r + tpk) ≡ f(r) mod pk+1
f′ (r) ≡ 0 mod p

f(r) ≡ 0 mod pk+1

t ∈ {0,…, p − 1}s = r + tpk

