

Entscheidungsverfahren mit Anwendungen in der Softwareverifikation

X: Modulare Arithmetik

Carsten Sinz Institut für Theoretische Informatik

09.01.2019

"Program Arithmetic"

Yes!

4 Solutions, e.g. 663169809

Algebraic Properties

Mathematical Integers vs. Signed vs. Unsigned

Addition

signed int **Property** \mathbb{Z} unsigned int (if defined) Closure yes yes yes Associativity yes yes yes a+(b+c) =(a+b)+cCommutativity yes yes yes a+b = b+aEx. of identity yes yes yes a+0 = aEx. of inverse yes yes no a+(-a) = 0

Multiplication

Property	Z	signed int (if defined)	unsigned int
Closure	yes	yes	yes
Associativity a*(b*c) = (a*b)*c	yes	yes	yes
Commutativity a*b = b*a	yes	yes	yes
Ex. of identity a*1 = a	yes	yes	yes
Ex. of inverse a*(a-1) = 1	only 1 and -1	only 1 and -1	all odd numbers

- Z: commutative ring with unity; integral domain (no zero divisors); Euclidian domain (division with remainder)
- $\mathbb{Z}/2^k\mathbb{Z}$: also commutative ring with unity, but no integral domain (for k>1)

Arithmetic in $\mathbb{Z}/2^k\mathbb{Z}$

Definition:

$$\mathbb{Z}/n\mathbb{Z} = \{\bar{a}_n \mid a \in \mathbb{Z}\} \text{ with } \bar{a} = \{..., a-n, a, a+n, ...\}$$

• As usual, we identify \bar{a} with a, where $0 \le a < n$, thus

$$\mathbb{Z}/2^k\mathbb{Z} = \{0,...,2^k - 1\}$$

- Examples of arithmetic in $\mathbb{Z}/2^k\mathbb{Z}$:
 - When has the equation $a \cdot x = b$ a solution? Is it unique?
 - Has the equation $x^2 = 33$ a solution in $\mathbb{Z}/2^8\mathbb{Z}$? Is it unique?
- · Basic facts:
 - $\sum_{i=1}^{n} a_i x_i \equiv b \pmod{m}$ is solvable for the unknowns x_i , iff the greatest common divisor of $\{a_1, ..., a_n, m\}$ divides b.
 - a has a multiplicative inverse mod m, iff gcd(a, m) = 1.
 - a^{-1} can be computed using the extended Euclidian algorithm or using Euler's theorem, $a^{-1} \equiv a^{\phi(m)-1} \pmod{m}$. For $m = 2^k$, $\phi(m) = \phi(2^k) = 2^{k-1}$, and thus $a^{-1} \equiv a^{2^{k-1}-1} \pmod{2^k}$.

Solving Equations in $\mathbb{Z}/2^k\mathbb{Z}$

- Given: Polynomial p(x)
- Goal: Solutions of $p(x) \equiv 0 \mod 2^k$
- First, consider the linear case: $p(x) = a \cdot x b$, i.e. solving the equation $a \cdot x = b$ modulo $m = 2^k$.
- If a is invertible, then $x = b \cdot a^{-1}$ is the (unique) solution. (This is the case, if a is odd.)
- Otherwise, $a \cdot x = b$ has solutions, iff $gcd(a,2^k) \mid b$. The solution is not unique, but a particular solution is given by x = b/a.
- Theorem: The congruence $ax = b \pmod{m}$ is soluble in integers if, and only if, $gcd(a, m) \mid b$. The number of incongruent solutions modulo m is gcd(a, m).
- How can we find all solutions?
- For all solutions x, the following holds: $\exists t . ax + tm = b$. Having a first solution x_0 , all solutions are given by $x_k = x_0 + k \cdot (m/\gcd(a, m))$ for $0 \le k < \gcd(a, m)$.

Solving Systems of Linear Congruences

• Given a system $S = \{E_j\}$ of linear congruences (mod m = 2^k) over n variables, with

$$E_j: \sum_{i=1}^n a_{ji} x_i \equiv b_j \mod 2^k ,$$

find its solution set.

- Algorithm [Ganesh, 2007]:
 - If there is an odd coefficient a_{ji} , solve equation E_j for x_i and substitute x_i in all other equations. If E_j cannot be solved for x_i , i.e. if $gcd\{a_{j1}, ..., a_{jn}, m\} \nmid b_j$, then there is no solution to S.
 - If all coefficients a_{ji} are even, divide all a_{ji} , b_j by two and decrease k by one.
 - Repeat the algorithm with the resulting system of congruences and stop with "success" if there is only one solved equation left.
- Properties:
 - The algorithm is a sound and complete decision procedure for linear congruences.

Solving Systems of Linear Congruences

Example: Solve the following system of congruences modulo 8:

$$3x + 4y + 2z = 0$$
$$2x + 2y = 6$$
$$4y + 2x + 2z = 0$$

Note:

 Ganesh considers the unknowns as bit-vectors of length k; when the system is divided by 2, the highest bit in each bit-vector is dropped (i.e. left unconstrained)

Question:

 How can the set of all solutions of S be determined after the algorithm finished?

Solving Non-Linear Congruences

- Task: Given a polynomial p(x), find all solutions of $p(x) \equiv 0 \mod 2^k$.
- Hensel lifting algorithm (special case for m = 2k):
 - 1. [k=1] Check, whether $p(x) \equiv 0 \mod 2$ has a solution. If not, exit with "no solution".
 - 2. $[k \rightarrow k+1]$ Let $\{x_i\}$ be the set of solutions for $p(x) \equiv 0 \mod 2^k$. We distinguish two cases to lift each x_i from k to k+1:
 - A. If $p'(x_i) \equiv 0 \mod 2$: [0 or 2 lifted solutions]
 - 1. If $p(x_i) \not\equiv 0 \mod 2^{k+1}$, x_i cannot be lifted
 - 2. Otherwise there are two lifted solutions $x_i^* = x_i + t \cdot 2^k$, $t \in \{0,1\}$
 - B. If $p'(x_i) \not\equiv 0 \mod 2$: [unique lifting] $x_i^* = x_i p(x_i) \mod 2^{k+1}$
- Note: Hensel-lifting also works for multivariate polynomials. However, already the base case (k=1) is NP-complete. (Why?)

Solving Non-Linear Congruences

- Example: $x^2 \equiv 33 \mod 2^4$
- $p(x) = x^2 33$, p'(x) = 2x
- [k=1, mod 2]: x²=1 mod 2 has solution x*=1
- [k=2, mod 4]: Try to lift $x^*=1$: $p'(x^*)=0$ mod 2, thus 0 or 2 lifted solutions $p(x^*)=0$ mod 4, thus 2 liftings: $x^{*'}=x^*+2t=\{1,3\}$
- [k=3, mod 8]:
 - Lifting $x^*=1: 0$ or 2 lifted solutions, $p(x^*)=0 \mod 8$, $x^{*'}=\{1,5\}$
 - Lifting $x^*=3$: 0 or 2 lifted solutions, $p(x^*)=0 \mod 8$, $x^{*'}=\{3,7\}$
- [k=4, mod 16]:
 - Lifting $x^*=1$: $p(x^*)=0 \mod 16$, $x^{*'}=\{1, 9\}$
 - Lifting $x^*=3$: $p(x^*)=8 \mod 16$, no lifting
 - Lifting $x^*=5$: $p(x^*)=8 \mod 16$, no lifting
 - Lifting $x^*=7$: $p(x^*)=0 \mod 16$, $x^{*'}=\{7, 15\}$

Hensel's Lemma

- **Theorem:** Let f(x) be a polynomial with integer coefficients, $k \ge m > 0$, r an integer with $f(r) \equiv 0 \mod p^k$. Then if $f'(r) \not\equiv 0 \mod p$, there is an integer s such that $f(s) \equiv 0 \mod p^{k+m}$ and $s \equiv r \mod p^k$. So s is a "lifting" of r to a root mod p^{m+k} . Moreover, s is unique mod p^{m+k} .
- Proof: Consider the Taylor series expansion of f:

$$f(r+p^kt) = f(r) + f'(r)p^kt + \frac{f''(r)}{2!}p^{2k}t^2 + \dots$$

Since $m \le k$, all terms but the first two vanish mod p^{k+m} , so

$$f(r+p^kt) = f(r) + f'(r)p^kt \pmod{p^{k+m}}$$

Setting $f(r + p^k t) \equiv 0$, we can solve for t:

$$f(r) + f'(r)p^{k}t \equiv 0 \pmod{p^{k+m}}$$

$$p^{k}t \equiv -\frac{f(r)}{f'(r)} \pmod{p^{k+m}}$$

$$t \equiv -\frac{\frac{f(r)}{p^{k}}}{f'(r)} \pmod{p^{m}}$$

Notes to Hensel's Lemma

- $f(r)/p^k$ is an integer by the lemma's assumption $f(r) \equiv 0 \mod p^k$.
- f'(r) has a multiplicative inverse mod p^m , as $f'(r) \not\equiv 0 \mod p$.
- The solution s unique mod p^{k+m} is given by $s = r + p^k t = r f(r)/a$, where $a \equiv f'(r)^{-1} \pmod{p^m}$.
- Case without a unique lifting (restricted to the case m=1 in the Lemma):
 - Assume $f(r) \equiv 0 \mod p^k$ and $f'(r) \equiv 0 \mod p$. Then $s \equiv r \mod p^k$ implies $f(r) \equiv f(s) \mod p^{k+1}$ by the Taylor expansion, i.e. $f(r+tp^k) \equiv f(r) \mod p^{k+1}$ for all integers t. We thus have two cases:
 - $f(r) \not\equiv 0 \mod p^{k+1}$: Then there is no lifting from k to k+1.
 - $f(r) \equiv 0 \mod p^{k+1}$: Then every lifting of r from k to k+1 is a root mod p^{k+1} , i.e. $s = r + tp^k$ is a solution for each $t \in \{0, ..., p-1\}$.