Entscheidungsverfahren mit Anwendungen in der Softwareverifikation

X: Modulare Arithmetik

Carsten Sinz
Institut für Theoretische Informatik

09.01.2019
unsigned int square_check(unsigned int x) {
 unsigned int y = x * x;
 if (y == 33) { error(); }
 return y;
}

Is error() reachable?

Has $x^2 \equiv 33 \mod 2^{32}$ a solution?

Yes!
4 Solutions, e.g. 663169809
Algebraic Properties

Mathematical Integers vs. Signed vs. Unsigned

<table>
<thead>
<tr>
<th>Property</th>
<th>\mathbb{Z}</th>
<th>signed int (if defined)</th>
<th>unsigned int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Closure</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Associativity</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>$a+(b+c)=(a+b)+c$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commutativity</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>$a+b=b+a$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ex. of identity</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>$a+0=a$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ex. of inverse</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>$a+(-a)=0$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Property</th>
<th>\mathbb{Z}</th>
<th>signed int (if defined)</th>
<th>unsigned int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Closure</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Associativity</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>$a*(bc)=(ab)*c$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commutativity</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>$ab=ba$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ex. of identity</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>$a*1=a$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ex. of inverse</td>
<td>only 1 and -1</td>
<td>only 1 and -1</td>
<td>all odd</td>
</tr>
<tr>
<td>$a*(a^{-1})=1$</td>
<td></td>
<td></td>
<td>numbers</td>
</tr>
</tbody>
</table>

- \mathbb{Z}: commutative ring with unity; integral domain (no zero divisors); Euclidian domain (division with remainder)
- $\mathbb{Z}/2^k\mathbb{Z}$: also commutative ring with unity, but no integral domain (for $k>1$)
Arithmetic in $\mathbb{Z}/2^k\mathbb{Z}$

• Definition:

$\mathbb{Z}/n\mathbb{Z} = \{\bar{a}_n | a \in \mathbb{Z}\}$ with $\bar{a} = \{\ldots, a - n, a, a + n, \ldots\}$

• As usual, we identify \bar{a} with a, where $0 \leq a < n$, thus

$\mathbb{Z}/2^k\mathbb{Z} = \{0, \ldots, 2^k - 1\}$

• Examples of arithmetic in $\mathbb{Z}/2^k\mathbb{Z}$:

 • When has the equation $a \cdot x = b$ a solution? Is it unique?
 • Has the equation $x^2 = 33$ a solution in $\mathbb{Z}/2^8\mathbb{Z}$? Is it unique?

• Basic facts:

 • $\sum_{i=1}^{n} a_i x_i \equiv b \pmod{m}$ is solvable for the unknowns x_i, iff the greatest common divisor of $\{a_1, \ldots, a_n, m\}$ divides b.

 • a has a multiplicative inverse $\mod m$, iff $\text{gcd}(a, m) = 1$.

 • a^{-1} can be computed using the extended Euclidian algorithm or using Euler’s theorem, $a^{-1} \equiv a^{\phi(m)-1} \pmod{m}$. For $m = 2^k$, $\phi(m) = \phi(2^k) = 2^{k-1}$, and thus $a^{-1} \equiv a^{2^{k-1}-1} \pmod{2^k}$.
Solving Equations in $\mathbb{Z}/2^k\mathbb{Z}$

- **Given:** Polynomial $p(x)$
- **Goal:** Solutions of $p(x) \equiv 0 \mod 2^k$

- First, consider the linear case: $p(x) = a \cdot x - b$, i.e. solving the equation $a \cdot x = b$ modulo $m = 2^k$.

- If a is invertible, then $x = b \cdot a^{-1}$ is the (unique) solution. (This is the case, if a is odd.)

- Otherwise, $a \cdot x = b$ has solutions, iff $\gcd(a, 2^k) | b$. The solution is not unique, but a particular solution is given by $x = b/a$.

- **Theorem:** The congruence $ax \equiv b \pmod{m}$ is soluble in integers if, and only if, $\gcd(a, m) | b$. The number of incongruent solutions modulo m is $\gcd(a, m)$.

- How can we find all solutions?

- For all solutions x, the following holds: $\exists t \cdot ax + tm = b$. Having a first solution x_0, all solutions are given by $x_k = x_0 + k \cdot (m/\gcd(a, m))$ for $0 \leq k < \gcd(a, m)$.
Solving Systems of Linear Congruences

- Given a system $S = \{E_j\}$ of linear congruences (mod $m = 2^k$) over n variables, with

$$E_j : \sum_{i=1}^{n} a_{ji} x_i \equiv b_j \mod 2^k,$$

find its solution set.

- **Algorithm [Ganesh, 2007]:**
 - If there is an odd coefficient a_{ji}, solve equation E_j for x_i and substitute x_i in all other equations. If E_j cannot be solved for x_i, i.e. if $\gcd\{a_{j1}, \ldots, a_{jn}, m\} \nmid b_j$, then there is no solution to S.
 - If all coefficients a_{ji} are even, divide all a_{ji}, b_j by two and decrease k by one.
 - Repeat the algorithm with the resulting system of congruences and stop with "success" if there is only one solved equation left.

- **Properties:**
 - The algorithm is a sound and complete decision procedure for linear congruences.
Solving Systems of Linear Congruences

• Example: Solve the following system of congruences modulo 8:

\[
\begin{align*}
3x + 4y + 2z &= 0 \\
2x + 2y &= 6 \\
4y + 2x + 2z &= 0
\end{align*}
\]

• Note:

 • Ganesh considers the unknowns as bit-vectors of length k; when the system is divided by 2, the highest bit in each bit-vector is dropped (i.e. left unconstrained)

• Question:

 • How can the set of all solutions of S be determined after the algorithm finished?
Solving Non-Linear Congruences

- **Task:** Given a polynomial \(p(x) \), find all solutions of \(p(x) \equiv 0 \mod 2^k \).

- **Hensel lifting algorithm** (special case for \(m = 2^k \)):

 1. \([k=1]\) Check, whether \(p(x) \equiv 0 \mod 2 \) has a solution. If not, exit with "no solution".

 2. \([k\rightarrow k+1]\) Let \(\{x_i\} \) be the set of solutions for \(p(x) \equiv 0 \mod 2^k \). We distinguish two cases to lift each \(x_i \) from \(k \) to \(k+1 \):

 A. If \(p'(x_i) \equiv 0 \mod 2 \): [0 or 2 lifted solutions]

 1. If \(p(x_i) \not\equiv 0 \mod 2^{k+1} \), \(x_i \) cannot be lifted

 2. Otherwise there are two lifted solutions \(x_i^* = x_i + t \cdot 2^k, \ t \in \{0,1\} \)

 B. If \(p'(x_i) \not\equiv 0 \mod 2 \): [unique lifting]

 \[x_i^* = x_i - p(x_i) \mod 2^{k+1} \]

- **Note:** Hensel-lifting also works for multivariate polynomials. However, already the base case \((k=1) \) is NP-complete. (Why?)
Solving Non-Linear Congruences

Example: \(x^2 \equiv 33 \mod 2^4 \)

\(p(x) = x^2 - 33, \quad p'(x) = 2x \)

- **[k=1, mod 2]:** \(x^2 = 1 \mod 2 \) has solution \(x^* = 1 \)
- **[k=2, mod 4]:** Try to lift \(x^* = 1 \): \(p'(x^*) = 0 \mod 2 \), thus 0 or 2 lifted solutions
 \(p(x^*) = 0 \mod 4 \), thus 2 liftings: \(x^* = x^* + 2t = \{1, 3\} \)
- **[k=3, mod 8]:**
 - Lifting \(x^* = 1 \): 0 or 2 lifted solutions, \(p(x^*) = 0 \mod 8 \), \(x^* = \{1, 5\} \)
 - Lifting \(x^* = 3 \): 0 or 2 lifted solutions, \(p(x^*) = 0 \mod 8 \), \(x^* = \{3, 7\} \)
- **[k=4, mod 16]:**
 - Lifting \(x^* = 1 \): \(p(x^*) = 0 \mod 16 \), \(x^* = \{1, 9\} \)
 - Lifting \(x^* = 3 \): \(p(x^*) = 8 \mod 16 \), no lifting
 - Lifting \(x^* = 5 \): \(p(x^*) = 8 \mod 16 \), no lifting
 - Lifting \(x^* = 7 \): \(p(x^*) = 0 \mod 16 \), \(x^* = \{7, 15\} \)
Hensel’s Lemma

Theorem: Let \(f(x) \) be a polynomial with integer coefficients, \(k \geq m > 0 \), \(r \) an integer with \(f(r) \equiv 0 \mod p^k \). Then if \(f'(r) \not\equiv 0 \mod p \), there is an integer \(s \) such that \(f(s) \equiv 0 \mod p^{k+m} \) and \(s \equiv r \mod p^k \). So \(s \) is a „lifting“ of \(r \) to a root mod \(p^{m+k} \). Moreover, \(s \) is unique mod \(p^{m+k} \).

Proof: Consider the Taylor series expansion of \(f \):

\[
f(r + p^k t) = f(r) + f'(r)p^k t + \frac{f''(r)}{2!} p^{2k} t^2 + \ldots
\]

Since \(m \leq k \), all terms but the first two vanish mod \(p^{k+m} \), so

\[
f(r + p^k t) = f(r) + f'(r)p^k t \pmod{p^{k+m}}
\]

Setting \(f(r + p^k t) \equiv 0 \), we can solve for \(t \):

\[
f(r) + f'(r)p^k t \equiv 0 \pmod{p^{k+m}}
\]

\[
p^k t \equiv -\frac{f(r)}{f'(r)} \pmod{p^{k+m}}
\]

\[
t \equiv -\frac{p^k}{f'(r)} \pmod{p^m}
\]
Notes to Hensel’s Lemma

- $f(r)/p^k$ is an integer by the lemma’s assumption $f(r) \equiv 0 \mod p^k$.
- $f'(r)$ has a multiplicative inverse mod p^m, as $f'(r) \not\equiv 0 \mod p$.
- The solution s unique mod p^{k+m} is given by $s = r + p^kt = r - f(r)/a$, where $a \equiv f'(r)^{-1} \mod p^m$.

- Case without a unique lifting (restricted to the case $m=1$ in the Lemma):
 - Assume $f(r) \equiv 0 \mod p^k$ and $f'(r) \equiv 0 \mod p$. Then $s \equiv r \mod p^k$ implies $f(r) \equiv f(s) \mod p^{k+1}$ by the Taylor expansion, i.e. $f(r + tp^k) \equiv f(r) \mod p^{k+1}$ for all integers t. We thus have two cases:
 - $f(r) \not\equiv 0 \mod p^{k+1}$: Then there is no lifting from k to $k+1$.
 - $f(r) \equiv 0 \mod p^{k+1}$: Then every lifting of r from k to $k+1$ is a root mod p^{k+1}, i.e. $s = r + tp^k$ is a solution for each $t \in \{0,\ldots,p-1\}$.