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Outline of the lecture:

 

• Ackerman reduction

• DPLL for Equality Logic with Uninterpreted 
Functions

• OBDD for Equality Logic with Uninterpreted 
Functions



  

EUF Logic or Equality Logic?

• It is possible to transform an EUF formula 
to Equality Logic formula

• To enforce the property of functional 
consistency

• Ackermann's reduction and Bryant's 
reduction



  

Ackermann's reduction

Given an EUF formula F1

• An equality formula F2:=  FC => Flat

• FC is a conjunction of functional-
consistency constraints

• Flat is a flattening of F1

• F1 is valid  iff  F2 is valid



  

Ackermann's 
reduction: Example

(x1 =/= x2) \/  F(x1)= F(x2) \/ F(x1)=/= F(x3)

• Flat  :=  (x1 =/= x2)  \/  (f1 = f2)  \/  (f1 =/= f3)

• FC :=  (x1 = x2  =>  f1 = f2) /\                         
             (x1 = x3  =>  f1 = f3) /\                         
             (x2 = x3  =>  f2 = f3) 



  

Ackermann's reduction: example

x1=x2 → F(F(G(x1))) = F(F(G(x2)))

• Flat := x1=x2 → f2 =f4
• FC :=  x1=x2 → g1=g2  /\
             g1=f1 → f1=f2    /\
             g1=g2→ f1=f3    /\
             g1=f3 → f1=f4    /\
             f1=g2 → f2=f3    /\
             f1=f3 →  f2=f4    /\
             g2=f3 → f3=f4

• g1=G(x1), g2=G(x2)

• f1=F(G(x1)), f2=F(F(G(x1))), f3=F(G(x2)), f4=F(F(G(x2))) 



  

EUF Decision Problem

 Task
Determine whether formula F is 

universally valid
• True for all interpretations of variables and 

function symbols
• Often expressed as (un)satisfiability problem

• Prove that formula ¬F is not satisfiable

x=y → f(x) = f(y)  is  valid

x=y ∧ f(x) = f(y) is satisfiable



  

Inference challenges for EUF

 Want to establish, for example, that           
f(f(a,b),b) = a  follows from f(a,b) = a

 Or that f(f(f(a))) = a and f(f(f(f(f(a))))) = a follow 
from   f(a) = a  

 These kinds of inferences are often required to 
perform program verification



  

Axioms of EUF

 Intuition behind decision procedure for EUF: 
repeatedly apply these axioms to infer new 
equalities

a1 = b1  a2 = b2  …  an = bn

f(a1, a2, …, an) = f(b1, b2, …, bn)
EQ-PROP

a = b    b = c

a = c
TRANS



  

SAT/BDDs and beyond

BDDs

Propositional Logic

SAT (resolution, DPLL)

Symbolic, Canonical Constraint-based

   ?:  Extend to more expressive systems/logics. 

                                                  The  EUF-logic?

  Large problems

 One solution

 Space intensiveSpace intensive

  Small problems Small problems 

  All SolutionsAll Solutions



  

DPLL procedure:

- Davis, Logemann, Loveland, 1962: 
“splitting rule”

•  Input: a formula in conjunctive normal form 
(CNF)
•  Select an atom A
•  Split into cases A and ¬A
•  In each case, simplify according new 
information 
• Output: “satisfiable” or “unsatisfiable”

 



  

DPLL for propositional logic:

Is CNF F satisfiable?

Is F /\ a satisfiable?
Is F /\ ¬a 

satisfiable?

To simplify F /\ a To simplify F /\ ¬a 

Criteria to close  branches 



  

Reduction rules for EUF

A unit clause s=t is not propagated in F if:

• s=t is contained in F

• s and t are contained in terms of  F\{s=t}

Example: a=f(b) /\ g(a)=f(f(b))



  

Reduction rules for EUF

•Remove t=/=t from all clauses

•Remove clauses containing t=t

•s=t /\ F to replace with s=t /\ F[s:=t] if s is not in   
 Term(t) 



  

Splitting rule for EUF-DPLL

• For a CNF F, Core(F) is the set of positive 
clauses of length at least 2

• Choose a literal s=t contained in Core(F)

• Propagate it in s=t /\ F



  

Splitting rule for EUF-DPLL

Example: 

• F: (x=y \/ y=z) /\ f(x)=f(z)

• Splitting on f(x)=f(z) leads to non-terminating   
   derivation

• Splitting on a literal contained in Core always 
leads to a terminating derivation 



  

SAT criterion for EUF

Let a CNF F contains no purely positive 
clauses. Then F is satisfiable.

Theorem1:

Proof:

• No purely positive clauses, hence, each clause 
contains at least one negative clause

• Assign different values to all terms in negative 
clauses



  

SAT criterion for EUF

Let a CNF F be reduced, does not 
contain an empty clause and Core(F) 
is empty.  Then F is satisfiable.

Proof:

• Each clause of length mote than one contains 
at least one negative literal.

• All unit clauses are propagated

Theorem2 (satisfiability criterion):
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Binary decision diagram (BDD)

– Vertex represents decision
– Follow green (dashed) line for value 0
– Follow red (solid) line for value 1
– Function value determined by leaf value

0 0

x3

0 1

x3

x2

0 1

x3

0 1

x3

x2

x1
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– Assign arbitrary total ordering to variables
• e.g.,  x1 < x2 < x3

– Variables must appear in ascending order along 
all paths

x1

x2

x3

x 1

x3

x 3

x
2

x 1

1

x1

Variable ordering

x
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y

x

z

x

Identify and share identical subtrees

x3 x3

x2

x3

0 1

x3

x2

x1

x3

x2

0 1

x3

x2

x 1

y

x

z

Reduction rule: MERGE
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x3

x2

0 1

x3

x2

x1

Remove nodes whose left and right child are 
identical

y

x

y

x 2

0 1

x 3

x 1

Reduction rule: ELIMINATE
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BDD ROBDD

• Canonical representation of Boolean function (for given 
variable ordering)

• Two functions equivalent if and only if graphs 
isomorphic : can be tested in linear time

• Tautology checking

x2

0 1

x3

x1(x1
 ∖∕ x  2  )  ∕∖  x   3

0 0

x3

0 1

x3

x2

0 1

x3

0 1

x3

x2

x1

 Reduced Ordered BDD
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BDDs for EUF: deficiencies of 
approaches based on congruence closure

 - Not all paths are consistent

 - Not canonical representation

 - To check consistency of all paths - > 
constraint solver can be invoked exponentially 
many times because of the Boolean structure 
of the formula

?:  Construct an ordered EUF-BDD in 
which  all paths are consistent by 
construction
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BDDs for EUF: ordering on equalities

t < f (t)

s > t, orientation of equalities
s = t 

s=t < u=v order on equalities: 

s <  u  or  s ≡  u   and t  < v

total, w.f. order on terms
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Reduction rules: the propositional 
structure of a formula

e

T
T

T

e

eT1

T2 T3

e

T1

T3

ITE(e,T,T) ⇒ T   
                     

1)

2)

ITE(e,T1,ITE(e,T2,T3)) ⇒ 
ITE(e,T1,T3)                        
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Reduction rules: the propositional 
structure of a formula

e1

e2T1

T2 T3

e2

T1
T3

3)

ITE(e1,T1,ITE(e2,T2,T3)) ⇒ ITE(e2,ITE(e1,T1,T2),ITE 
(e1,T1,T3)) 

e2 > e1 e1 e1

T2

T1
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Reduction rules: rewrite rules

t=s

T1 T1T2

s=t

T1[s
]

T2

s=t

T1[t] T2

T2

s=t
s > t

s > t

4)

5)

ITE(s=t,T1[s],T2)  ⇒ ITE(s=t,T1[t],T2)  
                      

ITE(t=s,T1,T2)  ⇒ ITE(s=t,T1,T2)    
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y=x

(x=y  /\  y=z)  → f(x)=f(z)

z=y

f(z)=f(x)

0 1

y=x

z=x

f(x)=f(x)

0 1 1

1
y=x

z=x

Example:
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  EUF-ROBDDs

• Nodes are labeled with equalities

•  Rewriting rules are always terminating

• Tautology is represented by “1”

• Contradiction is represented by “0”

• Checking equivalence of two boolean functions 
-> comparing their ROBDDs

• Canonicity of EUF-BDDs is lost 

– ϕ  and  ψ  are equivalent if ϕ  ↔ ψ  is represented 
by “1”



 

Thanks you for attention!
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