Part III – Decision Procedures for Equality Logic and Uninterpreted Functions

■ Algorithm I – From Equality to Propositional Logic
 ✔ □ Adding transitivity constraints
 ✔ □ Making the graph chordal
 ✔ □ An improved procedure: consider polarity

■ Algorithm II – Range-Allocation
 □ What is the small-model property?
 □ Finding a small adequate range (domain) to each variable
 □ Reducing to Propositional Logic
Range allocation

- The small model property
- Range Allocation
Uninterpreted functions

From a general formula:

\[u_1 = x_1 + y_1 \land u_2 = x_2 + y_2 \land z = u_1 \times u_2 \rightarrow \]
\[z = (x_1 + y_1) \times (x_2 + y_2) \]

To a formula with uninterpreted functions

\[u_1 = F(x_1, y_1) \land u_2 = F(x_2, y_2) \land z = G(u_1, u_2) \rightarrow \]
\[z = G(F(x_1, y_1), F(x_2, y_2)) \]
Ackerman’s reduction

From a formula with uninterpreted functions:

\[u_1 = F(x_1, y_1) \land u_2 = F(x_2, y_2) \land z = G(u_1, u_2) \rightarrow z = G(F(x_1, y_1), F(x_2, y_2)) \]

To a formula in the theory of equality

\[
\left[(x_1 = x_2 \land y_1 = y_2 \rightarrow f_1 = f_2) \land \\
(u_1 = f_1 \land u_2 = f_2 \rightarrow g_1 = g_2) \land \\
(u_1 = f_1 \land u_2 = f_2 \land z = g_1) \right] \rightarrow z = g_2
\]
The Small Model Property

- Equality Logic enjoys the *Small Model Property*
- This means that if a formula in this logic is satisfiable, then there is a finite, bounded in size, model that satisfies it.
- It gets better: in Equality Logic we can compute this bound, which suggests a decision procedure.
- What is this bound?
The Small Model Property

Claim: the range $1..n$ is adequate, where n is the number of variables in ϕ

Proof:

- Every satisfying assignment defines a partition of the variables
- Every assignment that results in the same partitioning also satisfies the formula
- The range $1..n$ allows all partitionings
Complexity

- We need $\log n$ variables to encode the range 1…n.
- For n variables we need $n \log n$ bits.
- This is already better than the worst-case $O(n^2)$ bits required by the Boolean encoding method …
Finite Instantiations revisited

\[
\begin{align*}
(x_1 = x_2 \land y_1 = y_2 \rightarrow f_1 = f_2) \land \\
(u_1 = f_1 \land u_2 = f_2 \rightarrow g_1 = g_2) \land \\
(u_1 = f_1 \land u_2 = f_2 \land z = g_1) \\
\end{align*}
\rightarrow z = g_2
\]

Instead of giving the range [1..11], analyze connectivity:

\[
\begin{align*}
x_1, y_1, x_2, y_2 & : \{0-1\} &
\end{align*}
\]

\[
\begin{align*}
u_1, f_1, f_2, u_2 & : \{0-3\} &
\end{align*}
\]

\[
\begin{align*}
g_1, g_2, z & : \{0-2\}
\end{align*}
\]

The state-space: from \(11^{11}\) to \(\sim 10^5\)
Or even better:

\[x_1, y_1, g_1, u_1 : \{0\} \quad x_2, y_2, g_2, f_1 : \{0-1\} \]
\[f_2, z : \{0-2\} \quad u_2 : \{0-3\} \]

The state-space: from \(\sim 10^5 \) to 576

An Upper-bound: State-space \(\leq n! \)