Decision Procedures in First Order Logic

Decision Procedures for Equality Logic
Outline

- Introduction
 - Definition, complexity
 - Reducing Uninterpreted Functions to Equality Logic
 - Using Uninterpreted Functions in proofs
 - Simplifications

- Introduction to the decision procedures
 - The framework: assumptions and Normal Forms
 - General terms and notions
 - Solving a conjunction of equalities
 - Simplifications
Basic assumptions and notations

- Input formulas are in NNF
- Input formulas are checked for satisfiability
- Formula with Uninterpreted Functions: ϕ^{UF}
- Equality formula: ϕ^{E}
First: conjunction of equalities

- **Input**: A conjunction of equalities and disequalities

1. **Define an equivalence class** for each variable. For each equality \(x = y \) unite the equivalence classes of \(x \) and \(y \). Repeat until convergence.

2. For each disequality \(u \neq v \) if \(u \) is in the same equivalence class as \(v \) return 'UNSAT'.

3. Return 'SAT'.
Example

\[
x_1 = x_2 \land x_2 = x_3 \land x_4 = x_5 \land x_5 \neq x_1
\]

Is there a disequality between members of the same class?
Next: add Uninterpreted Functions

\[x_1 = x_2 \land x_2 = x_3 \land x_4 = x_5 \land x_5 \neq x_1 \land F(x_1) \neq F(x_2) \]
Next: Compute the *Congruence Closure*

\[
\begin{align*}
&x_1 = x_2 \land x_2 = x_3 \land x_4 = x_5 \land x_5 \neq x_1 \land F(x_1) \neq F(x_2) \\
\end{align*}
\]

Now - is there a disequality between members of the same class? This is called the *Congruence Closure*
And now: consider a Boolean structure

\[x_1 = x_2 \lor (x_2 = x_3 \land x_4 = x_5 \land x_5 \neq x_1 \land F(x_1) \neq F(x_2)) \]

Syntactic case splitting: this is what we want to avoid!
Deciding Equality Logic with UFs

- Input: Equality Logic formula ϕ^{UF}
- Convert ϕ^{UF} to DNF
- For each clause:
 - Define an equivalence class for each variable and each function instance.
 - For each equality $x = y$ unite the equivalence classes of x and y. For each function symbol F, unite the classes of $F(x)$ and $F(y)$. Repeat until convergence.
 - If all disequations are between terms from different equivalence classes, return 'SAT'.
- Return 'UNSAT'.

Decision Procedures
An algorithmic point of view
Basic notions

\[\phi^E: x = y \land y = z \land z \neq x \]

- The **Equality predicates**: \(\{x = y, y = z, z \neq x\} \)
 which we can break to two sets:
 \[E = \{x = y, y = z\}, \quad E_{\neq} = \{z \neq x\} \]

- The **Equality Graph** \(G^E(\phi^E) = (V, E =, E_{\neq}) \)
 (a.k.a “E-graph”)

\[\text{Decision Procedures} \\
\text{An algorithmic point of view} \]
Basic notions

\[\phi_1^E: \ x = y \land y = z \land z \neq x \quad \text{unsatisfiable} \]
\[\phi_2^E: \ x = y \land y = z \land z \neq x \quad \text{satisfiable} \]

The graph \(\mathcal{G}^E(\phi^E) \) represents an abstraction of \(\phi^E \)

It ignores the Boolean structure of \(\phi^E \)
Basic notions

- **Dfn:** a path made of E_\equiv edges is an *Equality Path*. We write $x =^* z$.

- **Dfn:** a path made of E_\equiv edges + exactly one edge from $E_{\not\equiv}$ is a *Disequality Path*. We write $x \not\equiv^* y$.
Basic notions

Dfn. A cycle with one disequality edge is a Contradictory Cycle.

In a Contradictory Cycle, for every two nodes \(x, y \) it holds that \(x = \neq y \) and \(x \neq y \).
Basic notions

- **Dfn:** A subgraph is called *satisfiable* iff the conjunction of the predicates represented by its edges is satisfiable.

- **Thm:** A subgraph is unsatisfiable iff it contains a *Contradictory cycle*.
Basic notions

- **Thm**: Every Contradictory Cycle is either simple or contains a simple contradictory cycle
Simplifications, again

- Let S be the set of edges that are not part of any Contradictory Cycle

- **Thm**: *replacing all solid edges in S with False, and all dashed edges in S with True, preserves satisfiability*
Simplification: example

- \((x_1 = x_2 \lor x_1 = x_4) \land (x_1 \neq x_3 \lor x_2 = x_3)\)
- \((x_1 = x_2 \lor \text{True}) \land (x_1 \neq x_3 \lor x_2 = x_3)\)
- \((\text{False} \lor \text{True}) = \text{True}\)

Satisfiable!
Syntactic vs. Semantic splits

- So far we saw how to handle disjunctions through syntactic case-splitting.

- There are much better ways to do it than simply transforming it to DNF:
 - Semantic Tableaux,
 - SAT-based splitting,
 - others…

- We will investigate some of these methods later in the course.
Syntactic vs. Semantic splits

- Now we start looking at methods that split the search space instead. This is called *semantic splitting*.

- SAT is a very good engine for performing semantic splitting, due to its ability to guide the search, prune the search-space etc.