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Equality Logic

A Boolean combination of Equalities and Propositions

x1 = x2 ∧ (x2 = x3 ∨ ¬((x1 = x3) ∧ b ∧ x1 = 2))

We always push negations inside (NNF):

x1 = x2 ∧ (x2 = x3 ∨ ((x1 �= x3) ∧ ¬b ∧ x1 �= 2))
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Syntax of Equality Logic

formula : formula ∨ formula
| ¬formula
| atom

atom : term-variable = term-variable
| term-variable = constant
| Boolean-variable

The term-variables are defined over some (possible infinite) domain.

The constants are from the same domain.

The set of Boolean variables is always separate from the set of term

variables
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Expressiveness and complexity

Allows more natural description of systems, although technically it is

as expressible as Propositional Logic.

Obviously NP-hard.

In fact, it is in NP, and hence NP-complete, for reasons we shall see

later.
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Equality logic with uninterpreted functions

formula : formula ∨ formula
| ¬formula
| atom

atom : term = term
| Boolean-variable

term : term-variable
| function ( list of terms )

The term-variables are defined over some (possible infinite) domain.

Constants are functions with an empty list of terms.
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Uninterpreted Functions

Every function is a mapping from a domain to a range.

Example: the ’+’ function over the naturals N is a mapping from

�N× N� to N.
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Uninterpreted Functions

Suppose we replace ’+’ by an uninterpreted binary function f(a, b)

Example:

x1 + x2 = x3 + x4 is replaced by f(x1, x2) = f(x3, x4)

We lost the ’semantics’ of ’+’, as f can represent any binary function.

’Loosing the semantics’ means that f is not restricted by any axioms

or rules of inference.

But f is still a function!
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Uninterpreted Functions

The most general axiom for any function is functional consistency.

Example: if x = y, then f(x) = f(y) for any function f.

Functional consistency axiom schema:

x1 = x�
1 ∧ . . . ∧ xn = x�

n =⇒ f(x1, . . . , xn) = f(x�
1, . . . , x

�
n)

Sometimes, functional consistency is all that is needed for a proof.
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